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Introduction
EPCC has been coordinating the TRACS (Training and Research on Advanced
Computing Systems) programme since 1993 [1]. TRACS allows EC-resident aca-
demic and industrial researchers to come to EPCC for visits lasting between four
to thirteen weeks. During this time they can use EPCC resources and consul-
tancy to help their research. As part of the programme visitors are given access
to EPCC-owned terminals, which are distributed to host departments, mainly lo-
cated in Edinburgh, for the duration of their visit. The Web Interface was started
to address the need for a method of maintaining up-to-date records detailing the
whereabouts of these terminals. It has since been expanded to hold a wider range
of data relating to the TRACS visits.

Database Structure
The back-end of the TRACS Web Database system is a MySQL database. The
database allows a wide range of TRACS related data to be stored. To meet the orig-
inal requirement of the system EPCC terminals, their component parts and details
of their installations can all be stored in the database. The database also contains
tables to hold details of the TRACS visitors and their visits. The database allows the
dates of visits and installations to be recorded, which enables the database to store
not only their current status, but also their history. The current form of the database
is shown in the diagram below:
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The TRACS database.

General Table Generation
One requirement of the TRACS Web Database is that its front-end should provide
a means of viewing a summary of subsets of the TRACS data. This has been
implemented with Perl scripts that use the CGI to output HTML code that can be
viewed on web browsers. The method chosen to display the data is to format them
in dynamically generated tables. In order to minimise the amount of code required
to implement this, all the necessary tables are generated by a general routine. As
well as displaying the data, this routine also provides features to help improve the
clarity of the data. These include buttons to control the ordering of the columns,
and shading to show the past, present and future records. Access to the database
is made using the Perl Database Interface (DBI) [2]. The DBI allows the develop-
ment of database accessing routines that are independent of the actual database
implementation. This enables the front-end implementation of the web interface to
be independent of the back-end implementation, increasing the code portability.

An example table created by the general table routine.

General Record Manipulation
A second requirement of the TRACS Web Database is that the front-end should
allow records to be handled on an individual basis. As well as enabling the user to
view individual records, it should also make it possible for the administrator to edit
the records and create new ones. Again to keep to a minimum the amount of code
required, this has been implemented using a general routine.

An example table created by the general table routine.

Different Views
Due to the wide scope of the data that can be stored in the database, the web
database actually has several different classes of user. An example of such a class
is the systems user who is concerned with maintaining details of the EPCC termi-
nals, but not with the TRACS visitors. The Web Database accommodates this by
accepting different logins, using htaccess, for each class and only allowing access
to the data relevant to that user class.
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