
EPCC Summer Scholarship Programme – 2001

SS-2001-03: The TRACS Web Database
Daniel Mossop

EPCC, University of Edinburgh
University of Edinburgh

email dagm@dcs.ed.ac.uk

Introduction
EPCC has been coordinating the TRACS (Training and Research on Advanced
Computing Systems) programme since 1993 [1]. TRACS allows EC-resident aca-
demic and industrial researchers to come to EPCC for visits lasting between four
to thirteen weeks. During this time they can use EPCC resources and consul-
tancy to help their research. As part of the programme visitors are given access
to EPCC-owned terminals, which are distributed to host departments, mainly lo-
cated in Edinburgh, for the duration of their visit. The Web Interface was started
to address the need for a method of maintaining up-to-date records detailing the
whereabouts of these terminals. It has since been expanded to hold a wider range
of data relating to the TRACS visits.

Database Structure
The back-end of the TRACS Web Database system is a MySQL database. The
database allows a wide range of TRACS related data to be stored. To meet the orig-
inal requirement of the system EPCC terminals, their component parts and details
of their installations can all be stored in the database. The database also contains
tables to hold details of the TRACS visitors and their visits. The database allows the
dates of visits and installations to be recorded, which enables the database to store
not only their current status, but also their history. The current form of the database
is shown in the diagram below:

installed_machines

expensesdiary

visit_contacts

secondary_visit_contacts

keybd_itemsmonitor_itemscpu_items

locations

visit_hosts

hosts

addresses

research_visits

ip_data

visitors
contacts

SysAdmins

visit_machines

name
email
contact_status {available,unavailable}

visitor_pk
title
name

contact_pk

country
email

start_date
machine_fk

end_date

national

visit_fk

phone

data_pk
ip_address
netmask
gateway

email

location_fk

location_fk
sys_status

visit_fk

name

sys_pk

contact_fk

host_pk

phone

start_date

email

end_date

start_date
end_date

host_status

name

location_fk

host_fk
visit_fk

address_fk
institution
department
room
location_pk

end_date

visit_fk
entry_date
entry_title
entry_text

start_date

visit_fk
payment_name
payment_status

contact_fk

inst_machine_pk

monitor_item_fk
keybd_item_fk

cpu_item_fk

installer

install_date

ip_data_fk

request_date

removal_date

location_fk

visit_pk
visitor_fk
start_date
end_date
travel_mode
arrival_date
arrival_time
arrival_accommodation
visit_accommodation
form_status

broadcast

remover

item_pk
label
serial_no
item_status
comments

item_pk
label
serial_no
item_status
comments

visit_fk

address_pk
number
street
place
city
post_code
country

item_pk
label
serial_no
item_status
comments

The TRACS database.

General Table Generation
One requirement of the TRACS Web Database is that its front-end should provide
a means of viewing a summary of subsets of the TRACS data. This has been
implemented with Perl scripts that use the CGI to output HTML code that can be
viewed on web browsers. The method chosen to display the data is to format them
in dynamically generated tables. In order to minimise the amount of code required
to implement this, all the necessary tables are generated by a general routine. As
well as displaying the data, this routine also provides features to help improve the
clarity of the data. These include buttons to control the ordering of the columns,
and shading to show the past, present and future records. Access to the database
is made using the Perl Database Interface (DBI) [2]. The DBI allows the develop-
ment of database accessing routines that are independent of the actual database
implementation. This enables the front-end implementation of the web interface to
be independent of the back-end implementation, increasing the code portability.

An example table created by the general table routine.

General Record Manipulation
A second requirement of the TRACS Web Database is that the front-end should
allow records to be handled on an individual basis. As well as enabling the user to
view individual records, it should also make it possible for the administrator to edit
the records and create new ones. Again to keep to a minimum the amount of code
required, this has been implemented using a general routine.

An example table created by the general table routine.

Different Views
Due to the wide scope of the data that can be stored in the database, the web
database actually has several different classes of user. An example of such a class
is the systems user who is concerned with maintaining details of the EPCC termi-
nals, but not with the TRACS visitors. The Web Database accommodates this by
accepting different logins, using htaccess, for each class and only allowing access
to the data relevant to that user class.

Acknowledgements
Thanks to Elson Mourao who was responsible for the original database design.
Thanks also to Mario Antonioletti and Elena Breitmoser who developed the initial
implementation of the Web Database and who supervised this project.

References
1. The TRACS Home Page - http://www.epcc.ed.ac.uk/tracs.
2. Perl in a Nutshell (Chapter 12) - Siever, Spainhour and Patwardhan.

O’Reilly 1999


