
EPCC Summer Scholarship Programme – 2001

DPD: A Java implementation
Jo Hoffmann

EPCC, University of Edinburgh
University of Edinburgh
email jxh@dcs.ed.ac.uk

The aim of this project was to write a Java code for a DPD simulation.

DPD physics
DPD stands for Dissipative Particle Dynamics and is similar to Molecular Dynamics
(MD) in terms of algorithm development.
The state of a DPD simulation is entirely defined by the position of all particles and
their momenta. The simulation has two steps
� force calculation
� velocity and position update

The choice of a language
In general languages of choice for HPC applications are Fortran, C or C++. For
many people Java is not yet a language of choice for HPC. Features that Java
boasts are:
� Object Oriented language which allows flexible code reuse and modularisation
� Portability: Byte-code can run on any platform that has a Java Virtual Machine
� Network facilities like Remote Method Invocation and Jini provide facilities for

distributed computing.
� GUI support is build in

A language with so many features can not be ignored. But still many people believe
that the performance losses of Java codes compared to their Fortran or C equiva-
lents are reason enough. But benchmarking results [1] show that the performance
gap is closing down especially with JIT compilers becoming better and better.

The Class-model
The simulation has 3 main components
� Particle
� CompoundParticle
� Space

The Particle classes deal with single particles. They are the ’atoms’ of the simulation
because they are used on their own and within the CompoundParticles. Force cal-
culation can only take place between 2 Particles. The only final class is Monomer.
In case other particles that have different interactions need to be implemented a
new class extending DPDParticle can be added.

<<Interface>>
Particle

Type getType()
int getTypeId()
Vector3d getForce()
Vector3d getVelocity()
Vector3d getPosition()
void calcForce(Particle p)
void calcVelPos(double timestep)

DPDParticle

Type type
Vector3d force
Vector3d position
Vector3d velocity

void addForce(Vector3d forceInc)
void addVelocity(Vector3d velInc)
void addPosition(Vector3d posInc)
Vector3d getForce()
Vector3d getPosition()
Vector3d getVelocity()
void setForce()
void setVelocity()
void setPosition()
Type getType()
int getTypeId()

Monomer

void calcForce(Particle p)
void calcVelPos(double timestep)
double getMass()
Vector3d positionDiff(Particle p)

Type

id:int
mass:double
specForce:double

int getId()
double getMass()
double getSpecForce(int i, int j)

<<realize>>

Figure 1 : The Particle hierarchy
A CompoundParticle is a particle structure. It is responsible for updating the ve-
locity and position of its individual Particles while maintaining the constraints (like
distance between Particles for Dimers) under which the structure is assembled.

<<Interface>>
CompoundParticle

Collection getParticles()
void calcVelPos(double timestep)

Colloid

Collection getParticles()
void calcVelPos(double timestep)

Dimer

double distance

Collection getParticles()
void calcVelPos(double timestep)
void addPosition(Vector3d posInc)
void addVelocity(Vector3d velInc)
Vector3d getPosition()

<<realize>> <<realize>>

Figure 2 : The CompoundParticle hierarchy

The Space classes are the simulation managers. They setup and execute the sim-
ulation according to parameters provided in a file. In order to implement different
boundary conditions a new class extending DPDSpace can be added.

DPDSpace

DIMENSION:Vector3d
DENSITY:double
CUTOFFDIST:double
iterations:int
NUMBEROFPARTICLES:int
NUMBEROFDIMERS:int
NUMBEROMONOMERS:int
TIMESTEP:double
VOLMFRAC:double

int getNumOfParticles()
Vector3d getDimension()
double getDensity()
void createParticles()
void createCutOffBoxes()
void calcForces()
void calcVelPos(Vector3d strain)

<<Interface>>
Space

int getNumOfParticles()
double getDensity()
Vector3d getDimension()
void calcForces()
void calcVelPos(Vector3d strain)

LE_Space

SHEAR:double

void createCutOffBoxes()
void calcVelPos(Vector3d strain)

CyclicSpace

void calcVelPos(Vector3d strain)

<<realize>>

Figure 3 : The Space hierarchy

Conclusion
The result of 10 weeks of work is a working serial code with documentation. Re-
maining work will be the development of a GUI and the parallelisation of the code.

Acknowledgements
I would like to thank my two supervisors Lorna Smith from EPCC and Alexan-
der Wagner from the Physics Department for the help and advice they gave
me throughout this project. A full report of the project can be found at
http://www.epcc.ed.ac.uk/ssp/.

References
1 J.M. Bull, L.A. Smith, L. Pottage and R. Freeman, Benchmarking

Java against C and Fortran for Scientific Applications, In Proceed-
ings of ACM Java Grande/ISCOPE Confrence, June 2001


