cFCCL summer

Nl ateted

Scnolarsnip Frogramme — 22UVl = =

7

7N

DPD: A Java implementation

Jo Hoffmann

EPCC, University of Edinburgh
University of Edinburgh
email jxh@dcs.ed.ac.uk

The aim of this project was to write a Java code for a DPD simulation.

DPD physics
DPD stands for Dissipative Particle Dynamics and is similar to Molecular Dynamics
(MD) in terms of algorithm development.
The state of a DPD simulation is entirely defined by the position of all particles and
their momenta. The simulation has two steps

e force calculation

e velocity and position update

The choice of a language

In general languages of choice for HPC applications are Fortran, C or C++. For
many people Java is not yet a language of choice for HPC. Features that Java
boasts are:
e Object Oriented language which allows flexible code reuse and modularisation
e Portability: Byte-code can run on any platform that has a Java Virtual Machine
e Network facilities like Remote Method Invocation and Jini provide facilities for
distributed computing.
e GUI support is build in
A language with so many features can not be ignored. But still many people believe
that the performance losses of Java codes compared to their Fortran or C equiva-
lents are reason enough. But benchmarking results [1] show that the performance
gap is closing down especially with JIT compilers becoming better and better.

The Class-model

The simulation has 3 main components

e Particle
e CompoundParticle
e Space

The Particle classes deal with single particles. They are the "atoms’ of the simulation
because they are used on their own and within the CompoundParticles. Force cal-
culation can only take place between 2 Particles. The only final class is Monomer.
In case other particles that have different interactions need to be implemented a
new class extending DPDParticle can be added.

<<Interface>>
Particle

Type getType()

int getTypeld()

Vector3d getForce()

Vector3d getvelocity()

Vector3d getPosition()

\void calcForce(Particle p)

void calcVelPos(double timestep)

1
<<realizexp
s

DPDParticle Type

Type type ickint
Vector3d force :double

Vector3d position lspecForce:double
Vector3d velocity

lint getid()
ldouble getMass()
idouble getSpecForce(int i, int j)

\void addForce(Vector3d forcelnc)
void addVelocity(Vector3d velinc)
\void addPosition(Vector3d posinc)
Vector3d getForce()

Vector3d getPosition()

[Vector3d getVelocity()

\void setForce()

void setvelocity()

\void setPosition()

Type getType()

int getTypeld()

7Y

Monomer

void calcForce(Particle p)

void calcVelPos(double timestep)
[double getMass()

Vectorad positionDiff(Particle p)

Figure 1 : The Particle hierarchy

A CompoundParticle is a particle structure. It is responsible for updating the ve-
locity and position of its individual Particles while maintaining the constraints (like
distance between Particles for Dimers) under which the structure is assembled.

<<Interface>>
c article
(Collection getParticles()
void calcVelPos(double timestep)

N N

1 1

1 1
<<realizex> <<realizex>

1 1

1 1

N N

Dimer Colloid

double distance

(Collection getParticles()
\void calcvelPos(double timestep)

\void addPosition(Vector3d posinc)
\oid addVelocity(Vector3d velinc)

Vector3d getPosition()

ICollection getParticles()
void calcVelPos(double timestep)

Figure 2 : The CompoundParticle hierarchy

The Space classes are the simulation managers. They setup and execute the sim-
ulation according to parameters provided in a file. In order to implement different
boundary conditions a new class extending DPDSpace can be added.

<<Interface>>
Space
it getNumOfParticles()
ldouble getDensity()
[Vector3d getDimension()
[void calcForces()
Ivoid calcVelPos(Vector3d strain)

<<rea\|zeﬂ‘>
i
DPDSpace

IDIMENSION:Vector3d
IDENSITY:double
ICUTOFFDIST:double
iterations:int
INUMBEROFPARTICLES:int
INUMBEROFDIMERS:int
INUMBEROMONOMERS:int
[TIMESTEP:double
IVOLMFRAC:double

it getNumOfParticles()
[Vector3d getDimension()
|double getDensity()

[void createParticles()

[void createCutOffBoxes()

[void calcForces()

[void calcVelPos(Vectorad strain)

CyclicSpace LE_Space
ISHEAR:double

[void createCutOffBoxes()
[void calcVelPos(Vector3d strain)

Ivoid calcVelPos(Vector3d strain)

Figure 3 : The Space hierarchy

Conclusion

The result of 10 weeks of work is a working serial code with documentation. Re-
maining work will be the development of a GUI and the parallelisation of the code.

Acknowledgements

I would like to thank my two supervisors Lorna Smith from EPCC and Alexan-
der Wagner from the Physics Department for the help and advice they gave
me throughout this project. A full report of the project can be found at
http://www.epcc.ed.ac.uk/ssp/.

References

1 JM. Bull, L.A. Smith, L. Pottage and R. Freeman, Benchmarking
Java against C and Fortran for Scientific Applications, In Proceed-
ings of ACM Java Grande/ISCOPE Confrence, June 2001




