
EPCC Summer Scholarship Programme – 2001

Feedback Guided Scheduling for 2D Loops
Oleh Olkhovskyy

EPCC, University of Edinburgh
University of Edinburgh

email oleg@epcc.ed.ac.uk

Introduction
The aim of this work is investigation of 2-dimensional (2D) imbalanced loops
scheduling in a shared-memory machine. Loop scheduling is assignment of loop
iterations to threads/processors to minimise overheads. These overheads are syn-
chronisation, process management, communication and load imbalance. Synchro-
nisation occurs when processor must wait for some action by another processor,
such as relinquishing a critical region. Process management refers to time needed
to calculate iterations boundaries of each processor. Communication is interaction
between processors. Load imbalance occurs when some processors finish their
calculations earlier than other processors.

Loop scheduling algorithms� Guided algorithm[2]

� Affinity[3]

� Trapezoid[4]

� FGLS 1D: This 1D version of FGLS 2D, which will be described later[1].

� Feedback Guided Loop Scheduling(FGLS)[1]:
The loops iterations are divided into

�
patches, and are distributed between

processors. Each processor executes its iterations, keeping a track on time
of executing of the whole patch. Then dividing this time by the number of
iterations in patches we get the mean load per iteration. Next, we find new
boundaries, based on equipartitioning of the area under the mean load per
iteration. New boundaries are formed as follows: first we divide the area
in the x-direction, so that agregate time in the left and right parts is in the

ratio
��� ���

. Then with each of new patches we repeat the procedure, cutting

each patch in the direction perpendicular to the previous one, until we have�
patches. A second way is similar, except that we choose cut direction in

such a way that new patches are as square as possible.

� Guided 2D:
This algorithm is based on the guided algorithm. The size of a patch is�� � . Dividing the area into rectangles of exponentially decreasing size is
quite a difficult task. Here we use an algorithm, that allows us to get almost
square patches, with almost exponentially decreasing size. The first patch	�

�����
� �� ��� is square. The next few patches are of the same width, but de-

creasing heights, and are under the first one. The remained of the height, is
either distributed between these patches, or forms a new patch, if it is close
to the patch size. This operation is repeated for the rest of the area but in
alternating direction.
Figure 1 shows an example of dividing an area of the size 200x200 for four
processors. Darker color show patches build in x-direction, lighter color
shows patches build in y-directon.

Figure 1 : Guided 2D

Workload
The workload consists of communication and imbalance. The communication part
calculates mean value of array element, based on its neighbours. There are several
imbalance loads including Gaussian,Pond,Ridge and Sinusoidal standing wave.

Benchmark Results

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

2 4 6 8 10 12 14 16

E
ffi

ci
en

cy

Processors

FGLS 2D
FGLS 1D

Affinity
Guided

Guided 2D
Trapezoid

Figure 2 : Gaussian Load.Communication ��� Imbalance

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16

E
ffi

ci
en

cy

Processors

FGLS 2D
FGLS 1D

Affinity
Guided

Guided 2D
Trapezoid

Figure 3 : Gaussian Load.Communication � Imbalance

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 100 200 300 400 500 600 700 800 900 1000

E
ffi

ci
en

cy

Period

FGLS 2D
FGLS 1D

Affinity
Guided

Guided 2D
Trapezoid

Figure 4 : Varying period.Communication=0

Conclusions
Both algorithms FGLS 1D and FGLS 2D require slowly changing imbal-
ance;cumulating this can be clearly seen from Figure 4. In clear imbalance case
1D algorithms are more efficient, since they distribute iterations by lines, not by
rectangles,as 2D algorithms does. Hence each patch has points with high load and
low load, thus, the correspondent imbalance is spread more than in the case of 2D
algorithm.
In situation when time of imbalance is approximately the same as communication
time, 2D algorithms are ahead of 1D algorithms, due to fact that they use patches
close to squares. Since FGLS 2D produces only

�
patches, it is more efficient then

Guided 2D in communication load.

Acknowledgements
I would like to thank my supervisor Mark Bull for helping in this project, and all EPCC
staff for giving value information and sharing their experience.

References
1. Bull M.,Feedback Guided Dynamic Loop Scheduling: Algorithms and

Experiments,in Proceedings of EuroPar ’98, Lecture Notes in Com-
puter Science vol.1470,Berlin,1998.

2. Polychronopoulos C.D., Kuck D.J.,Guided self-scheduling: A prac-
tical scheduling scheme for parallel supercomputers,IEEE Transac-
tions on Computers, Vol. 36,No 12,1987.

3. Subramaniam S., Eager D.L.,Affinity Scheduling of Unbalanced
Workloads,University of Saskatchewan Saskatoon.

4. Tzen T.H., Ni L.M.,Dynamic loop scheduling dor shared-memory
multiprocessors,In Proceedings 1991 International Conference on
Parallel Processing.


