
EPCC Summer Scholarship Programme – 2001

Java MPI Simulator 2001
Rok Preskar

EPCC
University of Edinburgh

email: rok.preskar@kiss.uni-lj.si.

Introduction
The Message Passing Interface (MPI) [1] is a standard for communication be-
tween processes. The Java MPI simulator was designed as an applet to help people
learning MPI understand communications between processes and learn different
MPI commands by visualising the message passing process.

History
1. This applet was first developed in 1997 as a simulator for blocking point-

to-point communications, visualised as envelopes traveling from process to
process.

2. In 1998 it was extended by an SSP project to include collective communi-
cations. At this stage the user interface was completely revised.

3. Another SSP project in 2000 dealt mostly with documentation, refactoring,
and making the applet easier to understand.

Old version of the applet
The applet consisted of several modules (coded as Java Beans), which were not
completely independent. These were:

� Miscutils - Part of a different package, the utilities were scarcely used.

� Envelope box - Canvas capable of drawing the travelling envelopes.

� Process - Component representing one process involved in communica-
tions.

� Controller - Panel of buttons providing general applet commands.

� Communicator - Hidden component that supervised the collective commu-
nications.

� MPI - The runnable applet containing the other components listed above.

There were several problems, as well as gaps in functionality within the existing
applet. This prompted the current project, which changed some of the existing func-
tionality and extended it.

New version of the applet
On the figure below three processes exchanging messages via envelopes can be
seen.

The modifications of the applet included:

� Removing inconsistencies between collective and point-to-point communi-
cations. Both have been changed to include changing the data buffers as
well as displaying travelling envelopes.

MPI

ENVELOPEBOX CONTROLLER

MISCUTILS

PROCESS

� Removing most of the dependencies (some of them circular) among the
different Beans in the applet. The communicator was merged into the con-
troller and process modules for better consistency and understandability of
the code. The remaining dependencies are shown on the figure above.

� Implementing Java Swing instead of AWT to provide consistent cross-
platform appearance.

� Adding the ability for saving and restoring programmes through the applet
[2].

� Allowing the user to set the number of processes within the applet.

� Making the applet more intuitive for the user.

� Adding help windows.

� Altering the appearance of each process to remove scaling problems. The
appearance of a process is shown in the figure above.

� Adding numbers beside the programme list to indicate which commands
the user is seeing.

� Improving error messages.

Acknowledgements
I would like to thank my supervisors Mario Antonioletti, Lindsay Pottage and Neil
Chue Hong for providing help and guidance throughout the course of the project. I
would also like to thank Roger Hare, one of the organisers of the Summer Scholar-
ship Programme at EPCC, for providing me with valuable end-user comments.

Bibliography
1. Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker

and Jack Dongarra. MPI The Complete reference. The MIT Press.
1996.

2. Mary Dageforde, Security in Java 2 SDK 1.2,
http://java.sun.com/docs/books/tutorial/security1.2/index.html.


