
EPCC Summer Scholarship Programme – 2001

EPCC-SS-2001-12: I/O Issues and
Benchmarking of the Parallel GW Space code

Scott Fraser

EPCC, University of Edinburgh
University of Edinburgh

email scott@epcc.ed.ac.uk

Introduction
The GW space code is used to calculate the excited states of materials such as
semi-conductors. However the code is very computationally intensive, and for real-
istic problems the execution time is too high. Accordingly a parallel version of the
code has been developed using MPI.

While the execution time is lowered somewhat, the code is limited by several I/O
routines. Profiling revealed that MPI BCAST calls prior to writing to file used the
most time. This project focuses on these I/O issues with the aim of improving the
performance of the code, with both MPI and new MPI-2 methods.

Background Physics
The GW approximation proposed by Hedin was that the self-energy operator is
given by:

�(r; r
0

;!) =
i

2�

1Z

�1

d!
0

W (r; r
0

;!)�G(r; r
0

;! + !
0

)e
i!
0
Æ (1)

We can calculate the ground state of a material using density functional theory, and
treat the self-energy as a peturbation upon this to obtain a value for the excited
state of a substance. This is particularly useful when dealing with semi-conductors
as they are insulators in their ground states.

It has been shown that for semiconductors, the GW approximation allows computa-
tion of the band gaps in excellent agreement with experiment.

The code used here was developed by Reiger et al. A parallel version of the code
using MPI had previously been developed. This code used a great deal of compu-
tational time with expensive I/O procedures, and here these were to be improved by
means of new MPI code and also by introducing MPI-2 code.

Improvements to I/O
There were various techniques investigated that could be used to improve I/O per-
formance. These were:

� Use an algorithm with synchronous sends and receives to allow each pro-
cessor to read the specific part of an unformatted file that it wishes to have,
provided that all the data is not required on every processor.

� It is possible to allow all the PEs to access the file and read in the data. This
removes the time-consuming broadcasts and two of the subroutines in the
input phase.

Due to the fact that this reduces the portability of the code as some oper-
ating systems lock files when they are being read as well as when data is
written to them, the code was written with a logical variable pe all read set
in the control file.

This determines at runtime whether just one or all PEs should read the
code.

� Use of MPI-2: the first method using MPI-2 code to write out temporary files
used basic datatypes and is not the most efficient way to write data. The
algorithm used the MPI FILE WRITE AT ALL call to write each part of the
array to the correct offset in the file.

While this algorithm was not fully implemented, an uncomplete version was
tested.

� A more thorough investigation of MPI-2 revealed that using derived
datatypes has the potential to increase the speed of the I/O processes
by an order of magnitude compared to basic datatypes. In this case
the implementation is much easier, as there is a new function in MPI-2,
MPI TYPE CREATE SUBARRAY which will give each PE a view of a sec-
tion of an array only. This can then be written directly to file by each PE,
rather than having the whole array gathered onto one processor and written
to file (see Figure 1).

PE 0

PE 1

PE 2

PE 3PE 3

PE 2

PE 1

PE 0

Figure1: Schematic representation of standard MPI (left) and MPI-2 writing to
file

Benchmarks
Results are presented for a Cray T3E 1200 (CSAR service at Manchester):

Num/PEs Time/min Speedup

Serial 91.83 1
1 99.05 0.93
8 29.29 3.14

16 23.25 3.94
32 21.07 4.36
64 20.72 4.43

The previously developed MPI-1 code was recompiled with the optimisation flags
-O3 and -Ounroll2 and benchmarked against the serial code with the same flags.

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10 20 30 40 50 60 70

S
pe

ed
up

Number of Processors

MPI-1

Figure 2: Speedup for MPI-1 Code

The code does not scale well because a lot of the code is inherently sequen-
tial, with only the time intensive calculations having been parallelised. Also the time
taken for the intensive MPI BCAST calls increases.

This code would appear to be most efficient when run with between 8 and 16 pro-
cessors, although some gain can be achieved with th new I/O methods.

For detailed profiling of the code and a discussion of the various improvements to
the I/O please see the report at http://www.epcc.ed.ac.uk/ssp/

Acknowledgements
The author would like to thank the EPCC for the opportunity to take part in the SSP.
Also thanks to Lorna Smith and Elena Breitmoser who were the supervisors for this
project.

References
1. M.Reiger, Steinbeck, I. White, H. Rojas and R.Godby, Computer

Physics Communications, 117 pp2113-2228, 1999
2. L.Hedin, Phys. Rev., 139 A796, 1965


