epcc] b~

o -

EPCC-SS-2001-06

A Java Grande benchmark to compare Java and C++ performance
for a discrete event simulation application

Ana Bosque Arbiol

Abstract

The aim of this project is just to study C++ and Java performance for a discrete event
simulator. We are interested in introducing this kind of applications in the suite of bench-
mark tests which are in the Java Grande Benchmark. In the development of this project
we have used the ns simulator, which simulates computer networks. We worked only with
the core of this simulator, which takes care of the treatment of events. In this part of code,
a structure called the scheduler stores future events and decides which is the next to be
executed. We analysed the implementation of this structure and its performance inside the
simulator in order to separate it from the whole ns code. To do this we executed the ns
simulator with different computer networks models. To execute the scheduler structure out
of the simulator an event generator which simulates the performance of the one that has
the simulator has to be built. We did this using trace files due to the complex distribution
which were obtained in the execution of the simulator for the event generator. These trace
files were obtained in the execution of the ns simulator. The first model was written in
C++ because the ns simulator is written in this language. When we verified that the events
generated were exactly the same as in the ns simulator, we translated this model into Java
and executed the two models in different environments and platforms. As a result of these
executions we obtained a better performance in Java than in C++, specially when the size
of the problem is increased.

PN
il

EPCC-SS-2001-06 2

1 Introduction

Java is an object-oriented programming language and Grande applications those which have
large memory, network or computational requirements. Java wasn't designed for these type of
applications. Nowadays the use of Java has departed from its original design goals. This trend is
due to some interesting features that Java has: portability, no need of complex makefiles, support
of remote method invocation, remote file access and database access. But Java has also some
disadvantages compared with other languages like C or Fortran. These disadvantages include
the lack of some features for scientific calculations (nonexistence of complex numbers as a type
and multidimensional arrays), the absence of familiar parallel programming models (MPI and
OpenMP) and performance.

This last of Java disadvantages is perhaps the most important. Some programmers avoid the
use of Java because of this, without considering the last advances in just-in-time (JIT) and
adaptive compilers. This behavior is due to the lack of studies and publications relevant to
Grande applications in Java. The benchmarking effort made with the Java Grande Benchmark
[?, ?] tries to address this problem by providing the community a standard benchmark suite
which can be used to demostrate the use of Java for Grande applications, to provide metrics
for comparing environments in order to inform the users about the most suitable one for their
needs and to expose some interesting features in the performance of Grande applications that
can guide the development of the environments in appropriate directions.

A discrete event simulation application is a simulator which works with a set of initial events,
generating new events or cancelling the old ones during the execution of each event. In this
project we worked with the ns simulator, a computer networks simulator. In a computer network
when an event is executed (e.g. send a packet) new events can be generated (e.g. switch on a
timer, reception of the packet) and others cancelled (e.g. timers which have been switched on
before). For further information about this simulator see Appendix 5.1 in which we describe it
and give further references. Internet sites about it.

In this project we have built a benchmark to study the performance of an application which
inserts and deletes events from a scheduler. This benchmark would fit in Section Il of the Java
Grande Benchmark?[because it is an application.

We have worked with ns as a base, but for our purpose (comparing C++ and Java performance)
it is not neccesary to work with the whole code of ns, because it is a huge code and would take
a long time to translate in Java (the code of ns is actually in C and in C++), and to execute the
simulations that we are interested in. Thus we have extracted the simulator core which performs
the treatment of the events, and ignored the rest. We were interested only in this core because
it is the only part of the execution which does not change from one simulation to another. ns
allows the building of a huge amount of different computer networks and it is sure than the
events generated and cancelled in any of them would be really different to the events in the
others. But the scheduler will be always exactly the same: it will insert, cancel and look for
the events in the same way, meanwhile the rest is model dependent. Moreover it's possible to
change the simulator into another which simulates something different from computer networks
and as it was a discrete event application it would be possible to use the same scheduler.

To run this core, we have to create an event generator, an application which inserts the events
in the structure and decides what actions to take on the execution of each event. This event
generator has to reproduce the same conditions that the simulator creates in its execution. Only

EPCC-SS-2001-06 3

when we have completed this will be translated our model into Java and begin the comparisons
between C++ and Java performance.

The remainder of this paper is structured as follows: Section 2 describes the different steps that
we took in order to arrive to the final results. Section 3 shows the results that we obtained when
we executed the model in C++ and in Java. Section 4 provids some conclusions and Section 5
contains some appendices with further information about some topics related to this project.

2 Our work

In this section we will describe the steps taken, explain the problems that we found and how we
solved them. In this report we describe these steps in the same order as they were taken, to help
the reader understand what our problems were and how we solved them.

2.1 How the schedule structure works

In the introduction we explained that we did not require the whole code of ns to compare the
two languages we are interested in; we only need a part of the ns code called the scheduler. This
part treats the events in the simulator: it is a virtual clock which is used to determine when the
events have to been executed and a structure in which stores all the events that it has to execute
in the future.

The first thing that we did was to understand how the scheduler works in order to isolate it from
the rest of the ns simulator. There were different implementations of the scheduler in the ns
code: a ListScheduler which consists of a list of events linked by pointers, a HeapScheduler
which keeps all the events in a heap and the CalendarScheduler which was a kind of hash list.
At first we were only interested in the third structure, the CalendarScheduler, as it is the one that
ns uses by default and it has the best theoretical execution time.

The CalendarScheduler defines the operations of insertion, cancellation, looking for an specific
event and looking for the next event to execute. It uses a structure which consists of an array of
lists, called buckets. Each of these lists are ordered from the first event to execute in the list to
the last.

An event has to been inserted in a specific bucket depending on the value of the timestamp. The
first question to solve is how to determine the bucket in which an event is inserted. The optimal
situation is to have the minimum number of events in each of the lists, because the cost of the
operations made over a list are linear in the number of items of the list. To achieve this aim, two
actions are taken. The first is to try to balance the load of the structure in order to have the same
number of events in every list. The second is to resize the array depending on the number of
events that the whole structure has.

To get a balanced load of the schedule structure, it was noted that the most of the events may
be generated around some determined points in the time, so if the intervals of the buckets were
large, some buckets will contain a lot of events and others will be a very few or even zero. But

if the intervals are too small, then a large number of buckets will be required. For this reason
circular array is used, granting an unlimited number of buckets. The width of each bucket is
calculated depending on the distance between the events in the structure, to avoid the existence
of a bucket in which lots of events will be inserted.

EPCC-SS-2001-06 4

The other idea to maintain a small number of events in each of the buckets is to resize the
structure depending on the number of events in it. A good load in this structure is to have the
number of events between the half and double the number of buckets. If the number of events
is more than double the number of buckets, the number of buckets will be doubled and if the
number of events is less than the half the number of buckets, the number of buckets will be
halfed. These operations of resizing are expensive because they have to relocate all the events
in the structure.

The next questions are to know how the different operations are carried out. To insert an event,
we calculate the number of bucket in which it has to been inserted, and it is inserted in the list
of this bucket in order. To cancel an event we calculate the bucket in which it has to be and it
is deleted from the list. To look for the next event to execute it is necessary more information
because at first sight all the buckets have the same probability of containing the next event to
execute, so we would have to go through the whole array comparing the timestamps of the first
event of each bucket. There is a variable in the scheduler which keeps the number of the bucket
that contained the last event executed, is that the last event fired, and an interval in time in which
was this last event. This interval is built beginning from the timestamp of the last event adding
a 1.5*width for the upper limit (this ensures that the upper limit is a point at least in the next
bucket) and subtracting a multiple of width for the lower limit (it ensures that the lower limit is a
point at least in the previous bucket). When the next event is looked for, the first bucket to check
is the one pointed by the variable of the scheculer. If there is an event in this bucket is checked
if it is inside the interval or not. If it is inside the interval, it will be the next event fired. If it is
outside of the interval or the bucket is empty, the variable and interval will be changed in order
that they point to the next bucket in the scheduler and the first comparison will be repeated. This
operation will be repeated until the next event will be found. To optimize this operation in case
that the separation between events were huger than a complete round in the structure (number of
buckets multiplied by the width), after the first round without a positive result it is done a round
in the structure comparing the smallest event in each bucket and deciding in this way the next
event to be executed.

To obtain more information about the scheduler we decided to run some simulations on ns and
to study them. At first we took a very simple one, shown in Appendix 5.2. This simulation
was not very helpful because its behaviour is a little strange: at the middle of the execution the
load of the scheduler changes drastically, but there wasn't any reason. This network has only
two nodes connected by a full duplex connection which send messages one to the other by a
tcp protocol. This network was very difficult to scale in order to study the behaviour of the
scheduler with different loads because its structure is so simple.

In Appendix 5.3 we show which simulation we used for the benchmark. The network which

is simulated in this script is a ring of nodes in which we can vary the number of nodes, the
number of web clients, the number of tcp clients, the distance in nodes between servers, et. It
is a simulation that we could easily scale, so it was very suitable for studying the behaviour of
the scheduler. We simulated it with different numbers of nodes in the ring and studied the time
spent in the operations of the scheduler versus the time spent in event executions. We obtained
the results shown in Tabl#?.

These rates were measured in a 18-processor Sun HPC 400MHz UltraSPARC-II in which there
were other users, so they are not very accurate, but we can see clearly that the time spent in the
operations of the scheduler increases with the size of the scheduler (If the number of nodes is
larger, then there will be more traffic. This means that the number of events will be larger, so

EPCC-SS-2001-06 5

Number of nodeg Scheduler time
16 21.8%
32 22.5%
128 28.0%
256 34.2%
1024 32.7%
2048 64.2%

Table 1: Percentage of execution time spent in the scheduler

the data structure to keep them must be also larger.)

2.2 Which distribution we find in the simulations

When we analized and understood how the scheduler works and we separated it from the rest of
the ns simulator, we needed to create an event generator. This generator had to simulate the real
simulator, in order for the results to be representative. We therefore analysed the distribution of
event generation in the real scheduler.

We ran the simulation described in the previous section and analysed the event distribution with
three different sizes of the network, in order to avoid working with special cases. We chose
networks of 16, 256 and 2048 nodes. In the previous section we saw that the scheduler time was
different from one of these simulations to an other.

We were interested in different aspects of the distribution. One of them was the load of the
scheduler in order to know if the structure was resized in the execution of these simulations.
If this happens it will mean that the number of events changes a lot in the execution due the
existence of periods of time in which there are a lot of cancellations and others with a lot of
insertions. We output the number of events in the structure in each insertion and plotted this
data. We saw that the shape of the graph was exactly the same in all the simulations: The
number of events is the only thing that changes. We also proved that the scheduler is only
resized near the start, but never after that. In Fijiteve can see that at the beginning of the
simulation the number of events is increasing all the time, but after that it reaches a point in
which the number of event is always around a constant value, and it never reaches a number that
would cause the structure be resized. In the simulation of Figathe number of buckets is

128, and since the number of events never reaches 64 or 256, the structure is never resized.

The other aspect we were interested in was the insertion delay distribution. By insertion delay
we mean the time between the point in which the event is inserted and the point in which it
must be executed. We needed this information because we must reproduce it with our model.
Figure?? shows the graph for the simulation of 16 nodes (the X-axis shows the delay and the
Y-axis the frequency; the number of events with a specific delay). Here we only will show
graphs of this simulation (16 nodes) because the other simulations had exactly the same shape,
differring only in the number of events.

In Figure?? we can see that there are some peak points and perhaps a wider distribution in the
interval [0, 1] because we can see that there are a lot of points there. To see this distribution more
clearly we only plotted the interval [0, 1] and removed the peak points. FigRishows the

graph with this changes. In this graph we can see three different distributions: one around zero,

EPCC-SS-2001-06 6

Figure 1: Load of the scheduler in the simulation of a network with 16 nodes

140000

HELEL]

ALY

Figure 2: Delays insertion distribution for the simulation of 16 nodes

another in the interval [0, 0.4] and another in [0.4, 1]. Fig@feshows us these distributions
more clearly. Within these distributions we do not observe find any more structive.

We were also interested in the number of peak points that appeared in this distribution, so we

EPCC-SS-2001-06 7

- » woff o, ® a W

Figure 3: Delays insertion distribution between 0 and 1 without peak points

produced the graph in Figu® to count them. We can see that the peak points around zero are
significantly larger than the rest of them.

The last aspect that we analysed is the cancel delay distribution. By cancel delay we mean the
time between time in which the event is cancelled and the point in which it had to be executed.
Figure?? shows this; the X-axis shows the delay and the Y-axis the frequency, (the number of
events with a specific delay). In this graph we can see that there are events cancelled with almost
every delay, and also a lot of peaks points

2.3 How our model works

At first we wanted to build an event generator that simulates the one in the ns simulator. This
was the reason for the study described in the previous section. But after analysing the data we
realized that there was no familiar distribution. Moreover, there was more than one distribution.
For these reasons we decided that it was not feasible to build the event generator without any
additional information because it would be very difficult to demostrate that it behaved like a real
simulation. We decided to create trace files from the ns simulator and our model will read them
to decide what it will do in the execution of each event.

In the trace files we have to record which operations have to be executed in the execution of an
event, that is, how many insertions (with their delays), how many cancellations (with enough
information to locate these events) and how many searches (with the identification of the events
searched) are done by the network component which handles the event. All this information is
easy to obtain from the execution of the different simulations. In Appendix 5.4 we explain in
more detail the data recorded in the trace files.

EPCC-SS-2001-06 8

- - L
] »] - . =
100
- - L] L]
- o - L] W
L L) & L L L e L) & L L
L2 * ¥ L * ¥ . e L L ¥ W EF r =
& ow smmas & 0+ % s e s mm o+ w . = - aw - - e
- okl R R R L - b B Ll L L Ll L

F I T N N

W R B R B EE B B O R e LI N 3 R (LY] LI . RN 1
LL 2 b . L LI i ik - L L i LR L LR
* SRMERE W - - * - L B - * & - * S . L
- LI - 2 - * - - » - R EE# A W R EE W
F s - F - il - P & - 4
0.000 0.00oz 0.0003 00004 00005 00006
0
o
il F—
L) L L]
4 -
* - - e - B

R N Y e . —
L iR e e e

11 i e PP — -

AR WA B S B RS ram -

R e ST L

i e & 8 AR E R S e e

B e —— i & &
M- - -_an F e k. L] LR - - * ® * ¥ ¥ * L 3
| presas sam 2 B 8 a8 o - B - -
- .- aw R SR R b R 8RR S SRR 8
0 4 - e - w am
Li] 1.2 n4 e 18] !

Figure 4. Three different distributions in the interval between 0 and 1

When ns is executed, it inserts a few initial events in the scheduler, then goes into a loop in
which it searches the next event to be executed and executes its handler. The handler may do
nothing related with the events, else it may insert some new events, or cancel any of the events
which are currently in the scheduler. To reproduce this, we execute the ns simulator writing
out all the operations related with the events performed in the execution of the handlers. We
also wrote in the same file the initial events inserted in the scheduler. Our model is basically a

EPCC-SS-2001-06 9

1000

14000

S

£

4000

2

1RO

14000 a i

L]

RLLELE) . -

40000

| 0 D00 (L1 NE] 0 0 0 0o I'IITI-' 1] 'I'I'.‘ mod nora 0.0
Figure 5: The peak points of the distribution

handler for the events, which reads what the actions associated with the execution of each event
from a trace file. All the events in the execution of our model use our handler. In our model
we introduced an initial event with 0.0 as the timestamp. In the execution of the handler the
initial events are introduced, and after that the execution is exactly the same as the one in the
real simulator, but now our handler is executed and the operations of the scheduler are read from
a file. It is important to know that the trace file is load in a memory array at the begining of the

EPCC-SS-2001-06 10

(T

U 1T

Figure 6: Delays cancellation distribution

model execution in order to avoid that the readings from the trace file may be measured as part
of the application time modifying the results.

2.4 Our model in Java

When we had our model in C++ simulating the ns simulator, we translated it into Java. This
translation was straight forward because they are both object oriented programming languages
and the syntax between is very similar. We had no problems in this part of the project.

3 Results

At this moment we had the models implemented in Java and C++. The first thing that we had
to decided was the size of the trace files, is that, the time we are going to run the simulations
in order to get the trace files. We decided that it was interesting to run the simulations only 3
seconds because the trace files weren’t so big and the simulation overcame the starting load. We
decided this based in FiguR®. At this point we also had to decided the interval in which we
were going to take the measures. At the end we took the measures between 2 and 3 seconds.

All the executions were done in Sun HPC 6500 machine with 18 400MHz UltraSPARC-II pro-
cessors, 18 Ghyte of shared memory and 90 Gbyte disc space. For C++ we used three different
compilers: Sun Forte 6.1, Sun Forte 6.2 and gcc and for Java we exexuted our model in two
different Java Virtual Machines: Sun JDK 1.2.1 and Sun JDK 1.3.1 with both client and server
options. Figure?? shows the execution time obtained for all of these compilers and Java Virtual
Machines with trace files obtained from models with different number of nodes.

Figure 7: Time execution of our model with different sizes of the problem

EPCC-SS-2001-06 12

4 Conclusion

The execution time is better in any of the JVMs than in C++. Figure 1 shows that the execution
time of all the C++ compilers is very similar. The execution time in the different JVMs changes

more, jdk1.3.1 with server option is the fastest one taking only the half execution time of the
C++ model.

References

[1] Bull, J. M., Smith, L. A., Pottage, L. and Freeman, Renchmarking Java against C and
Fortran for Scientific ApplicationsProceedings of ACM 2001 Java Grande/ISCOPE Confer-
ence, Palo Alto, California, June 2001, pp. 97-105

[2] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty and R. A. Dav&Benchmark Suite
for High Performance JavaConcurrency, Practice and Experience, vol. 12, pp. 375-388,
2000

I'm Ana Bosque Arbiol. At this moment I'm student of Computer Engineering
at Universidad de Zaragoza (Zaragoza’s University).

My supervisors were Martin Westhead and Mark Bull

5 Appendix

5.1 More about ns

NS is an event driven network simulator developed at UC Berkeley that simulates variety of IP
networks. It implements network protocols such as almost all variants of TCP and UPD, several
forms of multicast, traffic source behavior such as FTP, Telnet, Web, CBR and VBR, router
gueue management mechanism such as Drop Tail, RED and CBQ, routing algorithms such as
Dijkstra, and more.

The NS project is now a part of the VINT project. VINT is a DARPA-funded research project
whose aim is to build a network simulator that will allow the study of scale and protocol inter-

EPCC-SS-2001-06 13

action in the context of current and future network protocols. VINT is a collaborative project
involving USC/ISI, Xerox PARC, LBNL, and UC Berkeley.

NS is Object-oriented Tcl (OTcl) script interpreter that has a simulation event scheduler and
network component object libraries, and network setup (plumbing) module libraries. To setup
and run a simulation network, a user should write an OTcl script that initiates an event scheduler,
sets up the network topology using the network objects and the plumbing functions in the library,
and tells traffic sources when to start and stop transmitting packets through the event scheduler.
We use the term "plumbing" because setting up a network is plumbing possible data paths among
network objects by setting the "neighbor" pointer of an object to the address of an appropriate
object.

Another major component of NS beside network objects is the event scheduler. An event in NS
is a packet ID that is unique in the system with scheduled time and the pointer to an object that
handles it. In NS, an event scheduler keeps track of simulation time and fires all the events in
the event queue scheduled for the current time by invoking appropriate network components.
Network components communicate with one another passing packets, however this does not
consume actual simulation time. All the network components that need to spend some simula-
tion time handling a packet (i.e. need a delay) use the event scheduler by issuing an event for
the packet and waiting for the event to be fired to itself before doing further action handling the
packet. Another use of an event scheduler is timer.

When a simulation is finished, NS produces one or more text-based output files that contain
detailed simulation data, if specified to do so in the input Tcl script. The data can be used
for simulation analysis or as an input to a graphical simulation display tool called Network
Animator (NAM) that is developed as a part of VINT project. NAM has a nice graphical user
interface similar to that of a CD player and also has a display speed controller.

NS is available from http://www.isi.edu/nsnam/ns. From this site you can download it and also
find further information about ns: how to install it, problems and bugs, tutorials at different
levels and more.

Currently, NS (version 2) written in C++ and OTcl (Tcl script language with Object-oriented
extensions developed at MIT) is available. In this project we began working with the 2.1b8a
version, but for building the trace-files that we needed, we used the 2.1b5 version, because the
Tcl scripts that we had didn’t work properly in the other version.

5.2 Ouir first simulation

set ns [new Simulator]

set nl1 [$ns node]
set n2 [$ns node]

$ns duplex-link $n1 $n2 10Mb 10ms DropTail
$ns queue-limit $n1 $n2 1000000
$ns queue-limit $n2 $nl 1000000

for {set i 0} {$i < 50} {incr i} {
set tcp($i) [new Agent/TCP/FullTcp]
$tcp($i) set fid_ $i

EPCC-SS-2001-06

14

$tcp($i) set syn_ true
$ns attach-agent $nl $tcp(S$i)

}

for {set i 0} {$i < 50} {incr i} {
set tcp($i) [new Agent/TCP/FullTcp]
$tep($i) set fid_ [expr $i + 5]
$tcp($i_) set syn_ true

$tep($i_) listen

$ns attach-agent $n2 $tcp($i)

}

for {set i 0} {$i < 50} {incr i} {
$ns connect $tcp($i) $tep($i)
}

for {set i 0} {$i < 50} {incr i} {
$ns at 1.0 "$tcp($i) send 10485760"
}

$ns at 3600.0 "finish"

proc finish {} {
exit 0

}

$ns run

5.3 The next simulations

number of nodes in the ring... it changes from one simulation
to the other

#set num_nodes 8

number of web clients per node (must be even)
set www_clients 2

number ftp clients per node (must be even)

set ftp_clients 2

number of nodes to servers (in each direction)
set server_dist 8

bandwidth of connections

set bandwidth 10Mb

delay of connections

set delay 0.1ms

ftp file size (bytes) intended

to require longer to transfer than

simulation length

set filesize 100000000

length of simulation
set stop_time 30

EPCC-SS-2001-06

#TCP parameters

#Agent/TCP set window_ [expr $bdp*4]
set win_size 1

Agent/TCP set windowlnit_ $win_size
set segperack 2

set delack 0.4

set lastsample 0

set client_addr 0

set no_of inlines 0

HHHHHHHHHH R R R R R
Initialisation

set ns [new Simulator]

set client_addr 0
ns-random O
ns set-address-format expanded

R R T R
Topology

proc build_ring {ns} {

global delay bandwidth num_nodes node

set node(0) [$ns node]

for {set i 1} {$i < $num_nodes } {incr i} {

set node($i) [$ns node]

$ns duplex-link $node([expr $i -1]) $node($i) $bandwidth $delay Drop-
Tail

} $ns duplex-link $node([expr $i-1]) $node(0) $bandwidth $delay Drop-
Tail

}

proc clock_add {ab}{

global num_nodes

set a [expr $a set b [expr $b set c [expr $a + $b]
if { $¢ >= $num_nodes } {

return [expr $c - $num_nodes]

} else {

return [expr $a+$b]

}

}

proc clock_sub {ab}{

global num_nodes

set a [expr $a set b [expr $b set ¢ [expr $a - $b]
if { $¢ < 0 }{

return [expr $c + $num_nodes]

} else {

return [expr $a - $b]

}

EPCC-SS-2001-06

16

proc build_ftpclient {cnd snd sftp startTime timeToStop Flow_id}
{

global ns

global stopTime

set cli [get_ftpclient]

set ctcp [get_ fulltcp]

$ctcp attach-application $cli
$ctep set fid_ $Flow_id

$cli tcp $ctep

$ns attach-agent $cnd $ctcp

set stcp [get_ fulltcp]

$stcp attach-application $sftp
$stcp set fid_ $Flow_id

$ns attach-agent $snd $stcp

$ns connect $ctcp $stcp

$ctcp set dst_ [$stcp set addr_]
$stcp listen

$ns at $startTime "$cli start"
$ns at $timeToStop "$cli stop"”
global ftplist

global ftplist

set ftplist($ctcp) $stecp

return $cli

}

proc build_wwwclient {cnd snd sp si startTime timeToStop Flow_id}

{

global ns stopTime no_of_inlines

set cli [get_wwwclient]

set ctcp [get_fulltcp]

$ctcp attach-application $cli
$ctep set fid_ $Flow_id

$cli tcp-primary $ctcp

$ns attach-agent $cnd $ctcp

set stcp [get_fulltcp]
$stcp attach-application $sp

EPCC-SS-2001-06

17

$stcp set fid_ $Flow_id
$ns attach-agent $snd $stcp

$ns connect $ctcp $step

$ctcp set dst_ [$stcp set addr_]
$stcp listen

global wwwlist

set wwwilist($ctcp) $stcp

for { set i 1 } {$i <= $no_of inlines } { incr
set ctcp [get_ fulltcp]

$ctcp attach-application $cli

$ctep set fid_ $Flow_id

$cli tcp-in-line $ctep

$ns attach-agent $cnd S$ctcp

set stcp [get fulltcp]
$stcp set fid_ $Flow_id
$stcp attach-application $si

$ns attach-agent $snd $stcp

$ns connect $ctcp $step

$ctcp set dst_ [$stcp set addr_]
$stcp listen

set wwwlist($ctcp) $stcp

}

$ns at $startTime "$cli start”
$ns at $timeToStop "$cli stop"

return $cli

}

proc get ftpclient {} {

global client_addr

set cli [new Agent/TcpApp/FtpClient]
$cli set addr_ [incr client_addr]
return $cli

}

proc get wwweclient {} {

N

EPCC-SS-2001-06

18

global client_addr

set cli [new Agent/TcpApp/WWWClient]
$cli set addr_ [incr client_addr]

$cli max_think_time 1.0

return $cli

}

proc get fulltcp {} {

global segperack delack

set atcp [new Agent/TCP/FullTcp]
$atcp set segsperack_ $segperack
$atcp set interval_ $delack

return $atcp

}

proc uniform {a b} {
expr $a + (($b- $a) * ([ns-random]*1.0/0x7fffffff))

}

build_ring $ns

for {set i O} {$i < $num_nodes } {incr i} {

set j [clock_add $i $server_dist]

set g [clock_sub $i $server_dist]

if { [expr $ifor {set k 0} {$k < $ftp_clients} {incr k 2} {

set sftpl [new Agent/TcpApp/FtpServer]

$sftpl file_size $filesize

set sftp2 [new Agent/TcpApp/FtpServer]

$sftp2 file_size $filesize

build_ftpclient [set node($i)] [set node($))] $sftpl [uniform 0.0
1.0] $stop_time 2

build_ftpclient [set node($i)] [set node($g)] $sftp2 [uniform 0.0
1.0] $stop_time 2

}

} else {

for {set k 0} {$k < $www_clients} {incr k 2} {

set siwwwl [new Agent/TcpApp/WWWServer]

set spwwwl [new Agent/TcpApp/WWWServer]

$spwwwl primary

set siwww2 [new Agent/TcpApp/WWWServer]

set spwww2 [new Agent/TcpApp/WWWServer]

$spwww?2 primary

build_wwweclient [set node($i)] [set node($j)] $spwwwl $siwwwl [uni-
form 0.0 1.0] $stop_time 3

build_wwweclient [set node($i)] [set node($g)] $spwww2 $siwww2 [uni-
form 0.0 1.0] $stop_time 3

EPCC-SS-2001-06 19

—

$ns at $stop_time “finish"

proc finish {} {
exit 0

}

$ns run

5.4 A little more about our trace files

Here we explain a little more about the information recorded in the trace files and the format of
the file. We discussed three different kinds of operations that can be executed over the scheduler;
insertion, cancellation and search. The last of these is never executed in the models that we were
simulating, but it is possible to execute it from a handler, so we designed our trace files in order
that this operation could be put in them. We also needed a separator in order to know when the
operations that an instance of our handler had to execute finished.

We put each instruction in a different line in our trace file. The first character in the line indicates
the type of the operation. We use i’ for insertion, 'c’ for cancellation, 'b’ for search and *' as

a separator. After that we write the information necessary for the performing of the operation:
for the insertion the delay, for the cancellation the timestamp (it's the fastest way to locate the
event) and the identification of the event, and for search the identification of the event. Below
we show a piece of a trace file by way of example.

i 0.00013200000000002099
i 0.00003200000000003200

*kkk
*kkk

*kkk

i 0.00013200000000002099
i 0.00003200000000003200

*kkk

*kkk

i 0.00056080000000002794

i 0.00046080000000003896

*kkk

c 1.22343780681239722163 17023
i 0.00056080000000002794

i 0.00046080000000003896

i 0.30000000000000004441

*kkk

*kkk

i 0.00056080000000002794

EPCC-SS-2001-06 20

i 0.00046080000000003896

*kkk

In this section of a trace file there are the operations for 9 different handlers The first handler
will execute two insertions, the two following handlers will execute nothing, the following two
insertions and so on.

