CPCC]

EPCC-SS-2001-03
The TRACSWeb Database

Daniel M ossop

Abstract

In the past tracking terminals allocated to visitors under the EPCC run TRACS programme [1]
has proved difficult. The TRACS web database system was started to provide a means of
recording the whereabouts of these terminds, and by the start of this project the underlying
database had expanded to hold details not just of the machines, but also of the visits. Further
growth of the database is likely in the future. This project ams to develop a more genera and
complete web interface than the one that existed at the start of the project. The system uses a
MySQL database [4] that is operated on via CGI scripts. The scripts are written in Perl and make
use of the Perl Database Interface (DBI) [5].

EPCC-SS-2001-03: The TRACS Web Database 2

1. Introduction

1.1. EPCC and TRACS

EPCC was established in 1990 as part of the University of Edinburgh. The Centre was formed to
accelerate the uptake of High Performance Computing (HPC) systems throughout academia,
industry and commerce.

EPCC has been coordinating the EC-funded TRACS (Training and Research on Advanced
Computing Systems) programme since 1993 [1]. TRACS alows EC-resident academic and
industrial researchers to come to the EPCC for visits lasting between four to thirteen weeks.
During this time they can use EPCC resources to help with their research.

As part of the programme the visitor is given access to EPCC-owned terminals, which are
digtributed to host departments, mainly located in Edinburgh, for the duration of the vigt. It is
important that the locations of these terminals are recorded in a clear and consistent manner. In
order to facilitate this an on-line database accessible through the web is being developed which
aimsto ad in tracking this hardware.

By the start of the Summer Scholarship Programme (SSP) [2] the range of information able to be
stored in the database had aready increased beyond tracking the terminals. This new information
included details of the vidts, the visitors, their hosts and their contacts. Further information may
need to be added in the future, so the design of the database and web front-end should be kept as
general as possible. Their implementations should aso be kept independent of one another,
making the front-end portable to different database systems.

The aim of this project was to complete the existing implementation of the web interface and

generalising the implementation to facilitate future expansion. In addition, there were a number of
suggested improvements that could be made if time permitted, such as implementing a system to
allow data to be inserted to the database from an XML file (applications to TRACS are made via
the web, and the entered data is stored in an XML file).

EPCC-SS-2001-03: The TRACS Web Database 3

2. Initial System

A partid implementation of the TRACS system was aready in place at the start of the SSP. This
is as a result of the work done by Mario Antonioletti, Elson Mourao and Elena Breitmoser since
winter 2000/01, when the project was started. Their implementation consisted of two main parts,
a database and a web interface.

2.1.The Database

Based on a design by Elson and extended by Mario and Elena, the database was in the form
shown in figure 1, at the beginning of the SSP.

Figure 1. Thelnitial TRACS Database.

wildrengpes
Pl
imacldne ftems ﬁf};ﬁ
fEm_Pk stmel
e {epiLkeyboand monitor je— Bhke hoste
libel Eity = | hosi_pk
serial no post_code s
e _sTatus locutton i el
L | location_pic | == ot m‘:::nn_ﬂr
dmstulled_muc e Spa host_seus
depamment e
ins_maching, ple [li—— trscitnan
= P'I.I_.'l = rn._ﬂr e vl Rosts S hh:n-.p
rnnrnr.-ul:._u.m_',fk - Ay ey p
eybd_iem_k bost fk mme
160e . dats starl <hre atd
insnll_date % phcne
nstaller * - 3 sLony
remnval_date U S
rEmover T
locanion_ix w:ui.ﬂr T
machire. :
star_date wislt comtucts
revemich sl end. daie
wisit Ak
wisit_ple | == eomact fi
ilslbolr wisitor_fk stan_ghre
visitor pk ...‘J— start_datc end_dme P R
titl e £nd dme aoncadat_phk
fatilhe -] name
antianal £mat|
counkry contect_stmis |aveilahle prevailabie |
&muil

In this form the database is able to store a range of data relevant to the TRACS programme. The
origina purpose of the web database (to keep track of the location of EPCC terminals) is dealt
with by four tables in the above diagram: machine_items, installed_machines, locations and
addresses. The terminals consist of three items, a CPU, a monitor and a keyboard. Each of these
items makes up a single entry in the machine_items table. The table holds details of the items,
such as their serial number, their status (ie. whether they are in need of repair or not) and what the
item is (CPU, monitor or keyboard).

EPCC-SS-2001-03: The TRACS Web Database 4

The installed_machines table links to the machine_items table for three of its fields. These links
specify which CPU, monitor and keyboard are part of the termina. The rest of the
installed_machines table holds details about its ingtdlation, e.g. who ingtalled it and when. It dso
links to the locations table, alowing the location of the termina to be recorded. Each time a
termina is ingaled somewhere a new installed_machines record will be created, without

removing details of its previous ingdlations. This will alow the history of the terminals to be
retained. The locations table specifies aroom within an institution (for instance, a university) and
links to the addr esses table which specifies the city, street and number of the ingtitution.

The database shown has expanded to include data other than details of the terminals. The visitors
table alows details of TRACS visitors name, nationdity and email address to be stored.

Likewise the contacts, hosts, and SysAdmins tables allow details of the contacts and hosts (local

researchers collaborating with the visitor) and EPCCs systems administrators (who are
responsible for the distributed terminals) to be stored.

On their own, however, these tables would be of limited use. The usefulness of the database
comes from the fact that theresearch_visits, visit_machines, visit_contactsand visit_hosts tables
alow records in the previous tables to be associated with one another. In this way, details of a
TRACS vist can be built up, by associating a visitor with the visit(s) and then assigning (one or
severa) machines, contacts and hoststo it.

The database in this form alows questions about the TRACS vidits (such as. where isterminal X?
or, who is the contact for visitor Y ?) to be answered smply.

The database is implemented in MySQL, a robust database product that implements a subset of
the SQL relationa database programming language.

2.2.The Web Interface

While the above questions could be posed directly to MySQL on the command line, it is not really
a practical solution, since the queries may at times be quite complex and the users may have
limited knowledge of SQL. A better solution is to create an interface that alows the user to pose a
question easily, perhaps by selecting menu options or pressing buttons, and then generates the
corresponding database query. The query can then be passed to MySQL and the returned results
displayed in a sensibly formatted manner. Mario and Elena began the implementation of such an
interface. The interface is web based, making it accessible to distributed users. It is written in Perl
and uses the Perl Database Interface (DBI) and the Common Gateway Interface (CGI). DBI
provides a common method of connecting to databases, which not only alows it to connect to
MySQL, but also alows it to connect to many other databases products without the need to alter
the database accessing code. CGI allows the web server to dynamicaly generate HTML pages,
and through its use an interactive interface can be created that can be displayed on most Internet
browsers.

The figure 2 shows most of the Perl scripts that had been implemented by the start of the SSP (the
shaded boxes indicate completed scripts, the white boxes indicate partialy complete scripts).

EPCC-SS-2001-03: The TRACS Web Database 5

Figure 2: Thelnitial Implementation Scripts.

CueryAllSyzddminz.en)

QueryCurrentStatuzcg) ! Admineel

| QAT ocationscr) | [QRegAIVMTEe |]

_-‘
OneryMachinece
EdltMachinec!

|w'&mmam.cg1 |\|New"u"s‘ltcg‘l| |Edi1".-'1'u1'lu1.:g1' |
;

BerHon bl

|Quer}ﬂygﬁdm1n£g1|—|lid115]ﬂdm1mg1 |

Hehctimcpl

There are four main categories of script featured in the figure 2. These scripts are the QueryAll
scripts, the Query scripts, the Edit scripts and the New scripts. The QueryAll scripts displayed al
records of a given type (visitor, host, etc.) in an HTML table. The script for displaying all
machine records also adds colour-coding to the records in the table to indicate whether they were
associated with past, present or future visits. The Query scripts displayed a single record of a
given type. These scripts sometimes displayed more information about the records than was
displayed by the QueryAll scripts (which provided a summary only). The Edit scripts alowed an
individual record of a given type to be edited, and the New scripts alowed an individual record of
given type to be created.

There were a so other scripts at the start of the SSP, other than those shown on the diagram. Some
of these supported the Query and QueryAll scripts by providing routines to retrieve the relevant
records from the database. Others supported the Edit and New scripts by providing routines for
writing data to the database. See Appendix A for the full list of scripts that were implemented by
the start of the SSP.

EPCC-SS-2001-03: The TRACS Web Database 6

3. Objectives

This project aimed to implement the TRACS web database system to the point that it was
sufficiently functional to alow it to be put into use. There were a number of areas of development
that needed to be addressed to achieve this.

3.1. The Database

There is some information relevant to the TRACS visits that can not be accommodated by the
database as it was at the start of the programme. This includes data such as the | P addresses of the
terminals, details of the vistors arrivals and accommodation and diary records of meetings
between the contacts and visitors. The database should be extended to handle this.

3.2. A General HTML Table Generator

One requirement of the Web Database is that it should have a method of displaying summaries of
the information contained in the database. These summaries originally implemented as HTML
tables by the QueryAll scripts mentioned in the section on the initial system. This involved having
a script for each table that could be displayed. If this could be replaced by a single routine that
could generate al the required tables then the amount of time and new code necessary to handle
expansions to the system might be reduced.

3.3. The General Record Manipulator

As well as being able to view summaries of the data, the user also needs to be able to work with
individual entries, viewing them and editing them. The user also needs to be able to create new
entries. This functionality was originaly partialy implemented by the Query, Edit and New
scripts. A genera routine that could replace these scripts could significantly increase the ease
with which database expansions could be handled.

3.4. Web Database Views

When the system is in full use there will be several classes of users. Some will be alowed to view
records only, while some will be alowed to create new records or ater existing ones. In order to
accommodate this an access system that gives different user classes different views of the
database could be implemented.

3.5. The Administrative Layer

There may be times when it would be desirable for a system administrator or similar to directly
dter the contents of the database. While this is possible by accessing the MySQL database
directly, an HTML front-end would provide a much smpler interface. The Administrative Layer
would aso provide the only way of removing records from the database. Such a database view
would necessarily have a restricted access.

EPCC-SS-2001-03: The TRACS Web Database 7

4. Final System

This section will examine the extent to which the project objectives have been achieved during
the course of the SSP. It will examine each of them in turn, before finishing with a look at issues
that remain outstanding.

There have been mgor changes to the files that implement the system during the course of the
SSP. Figure 3 shows the main files that are now used, and how they interrelate.

Figure3: The Current TRACS Scripts

DrawTable.cgi ExpandTable.cgi

Admin.cgi ChangeData.cgi

GetData.cgi Databaselltils.cgi SubmitData.cgi

DrawTable.cgi contains the routine that generates the HTML tables. The routine calls the SQL
query builder located in ExpandTable.cgi. From DrawTable.cgi it is possble to link to the
adminigrative layer implemented by Admin.cgi with support from GetData.cgi. It is also possible
to link to the individual record manipulator. This is implemented by ChangeData.cgi which
makes use of routines in DatabaseUtils.cgi and SubmitData.cgi. For afull list of the files now in
use, see Appendix B.

4.1. The Database

The database has been altered during the course of the SSP for two main reasons. One is that
changes to the database have allowed the implementation of the Web Interface to be smplified.
The other is that extensions to the database have made it possible to store more TRACS data than
before. As aresult of these changes, the database appears as shown in figure 4.

EPCC-SS-2001-03: The TRACS Web Database 8

Figure4: The Current TRACS database.

ap e wmanilor ftawmg kopld e addrese
foer_ple dreen_pk iren_pike
labe] bl libe] B "
sedil fo zerlal na ekl no numbcr
feem_stams Tem_sanis frerm_stat s el
BN COETRLIE (DTS place hoats
diy >
2 paa_eowde s
e
e | LELDN_phe ""'—l Rt el
iremallad ki] st maus
depanment
Lnn'l._rnn-chlne_plr - A
cpa_item_fic et address i |—— Vst ety SvrAdininy
mmaniiar_mem_fir % SyE_pk
wewtel_fem Tk - vist_fk T
hasi_r
ip_data_fk = email
cequest_dme ¥ sar_daic phonc
inzall date sy _ratus
¥ L |
installer eli_imeriimar
removal_dere el vicir_flc
[atin sy L
o i max hinc_ 4k
LocELnn_; l ’m;:-—dldn e
£n :d
rimearch ity iz T
wisL_pk el ooman_fk
Fidtaty wistor_fk sti_ate i
stam dae e deme
crel_ceie
Aile el e - cones_pk
RAmc arrival_dsie G
natlooul 2rrival_tiome: il
Sramicy drrival_aceoenmodation o conmct_Sius |n.u'i|.u.h|=,mnuila|1le|
il ¥t Bocommodstion dury_rislt_co:
form_starus T
oot
s dams
oo dae
i dedui
eigrerar
- dus pke visn_{k
1p_address paymert_rmme
nexmask POy MEnT St
BESWEY
broadeas
[T 0117 oy -

One of the first changes made to the database was to separate the machine_items table from the
initia database into three separate tables, one for each type of machine item: CPU, monitor and
keyboard (cpu_items, monitor_items and keybd items respectively). This adds to the number of
tables in the database, but reduces the amount of data that must be stored since there is now no
need for an explicit field indicating the item type. Previoudy the installed_machines table was
joined to the machine_items table on three of its columns. Now it has the property that it isjoined
to other tables on a most one of its columns (e.g. installed_machines is joined to cpu_items by
one column only — cpu_item fk). This property is now true for al tables in the database. This
smplification helped to keep the amount and complexity of code required for a genera table
routine (discussed in the next section) to a minimum. This was the only change necessary to
alow the completion of the implementation that had been started.

All other changes to the structure of the database have been made to extend the range of TRACS
data that can be stored. The ip_data table has been added to allow the IP addresses (and other

EPCC-SS-2001-03: The TRACS Web Database 9

related information) of terminds to be sored. This is linked to a new fidd in the
installed_machines table. The initiad database was only able to specify one contact per visitor,
while in practice visitors can be assigned both a primary and secondary contact. This is now
addressed by the secondary_visit_contacts table. The secondary_visit_contacts table creates
associations in the same way the original visit_contacts table does, the table holds the keys of the
visit and contacts that are to be associated and specifies a start and end date for the association.
The research_visits table has been extended to include details about their arrival in Edinburgh
and their accommodation during the visit. During the visits TRACS visitors receive periodic
payments (subsistence, travel, etc.). This is now held in the expenses table, which links to the
research_visits table (ie. Each visit has associated expense records). Another table that links to
theresearch visits tableisdiary. The diary table allows the TRACS contacts and hoststo record
the outcome of meetings with the visitors, and permits entries to be very large if necessary (up to
4Gb).

4.2. The General HTML Table Routine

One of the most important functions the Web Database must be able to perform is to summarise
selected data from the database. As happened in the initial implementation, the data is displayed
in HTML formatted tables. The aim of this section of the project was to produce a general routine
robust enough to be able to create tables from any given combination of columns from the
database.

On first inspection the database appeared to be not at all suited to a generd routine. The layout
did not seem to be significantly regular to be described by a single routine. Changes to the
database were considered, in order to try and increase the regularity. Only one alteration was
made to this effect. The machine_items table was split into three tables: cpu_items, monitor_items
and keybd_items, as mentioned in the last section. Where previoudly there had been three links
from the installed_machines table to the machine_items table, there was now only one to each of
the three new tables. The condition that any two tables were linked on at most one entry was now
true for the whole database. This alowed the implementation to be smplified significantly. Since
this condition is assumed by the general table routine, it must be preserved by any future
expansion of the database.

The dtuation was also complicated by the tables that link between two other tables (ie.
visit_machines, visit_contactsand visit_hosts). Because they link between other tablesthey do not
have their own primary keys (they are uniquely defined by the composition of several columns).
This would mean that extra code would be required to handle these tables. However, the entriesin
these tables only ever relate to a single TRACS visit. It seemed unnecessary to have a table
displaying all of the entries, when they are largely unrelated to each other. It was decided, then,
not to attempt to make the general table routine capable of handling these tables, but instead leave
them to be displayed by the generd routine for manipulating individual entries.

This view of the database was now sufficiently smple to alow the creation of a genera table
routine (which is in the file DrawTable.cgi). The first thing that had to be done was to declare
information about the structure of the database. This included specifying, in a definitions file (in
Definitions.cgi), the joins between tables. The SQL language actually permits these joins to be
declared when the tables are defined, but this feature is not implemented in the version of
MySQL currently in use for the database. Other details of the database were also written to the
definitions file. Some, like the names of the database tables and columns can actualy be found
out directly from the database which would save the need for new declarations to be added when
the database is expanded, though currently this is not implemented. Others, like the display names

EPCC-SS-2001-03: The TRACS Web Database 10

for the columns and tables and the diases for the tables are not available from the database, and
must be specified'. These are used to make the Web Database more informative to the user. A
further list of definitions was needed to declare, for each table that the routine would be used to
create, the names and locations of the columns to place in the table and the specifics of any
ordering and grouping on that table. This list so specifies the path from the table holding the
first column, to the tables holding the other columns of required data.

Since any HTML table the routine creates must be populated with data from the database, it was
necessary to write a general routine that produces SQL queries to extract the required data. By
using the path ligts for the tables defined in the definitions file, the SQL query builder (found in
ExpandTable.cgi) is able to traverse the database joining together al the tables necessary to alow
all the relevant columns to be selected.

Once al the data has been obtained from the database, it is relatively smple to display it in a
HTML table. A sample output table is shown in figure 5.

Figure5: A Table Generated By DrawTable.cgi.

Ak Edi View Fawols: Tosh Helk -

5.+ @ O A9 M 3N I w
Faliag Skn Fereh Home

H-:l:l'_ Smsch F_-:l\.-uliu: Histop LET Prini Eri - Fieal G)
| Agddiess |EI g Mmeepce sd acuk ™ deris hacsdb! S esien e abl e oo Viable=rezsach_ves :.I 'C;'G" | Lk

| epcc| Training and Research on Advanced Computing Systems

['izts] [Viiers] fachines] [Heeed] |Contcw] [ecaris) [Addreszes| [Svsddmin] [CPUs) Minitrs]
[Eeherards] (I Data)

Table of TRACS Visit Records

Id pewrocerd] | Visitors | StartDate | Fnd Date | Machines Honsts Cantacts

7 el [Citee Ea [o3ra3renne odidrzong | Ted Alen

Spetemasr] [Tobm Johnsteme [20/02/200F EOOMZ00E [FIVES Tiaw= Bishop Draniel Mozzap

Ajtsnoss] [Steve Green [024020200% BOOB2002 [EM Accelecstor Toanna Smith [Ancrew McLean

Elvismiusr] |OimoEa [11032001 peaozon | Ted len

elwiir] |DanMossop [03/03/2001 1200001 [T5 Tea

HEMM&I:] Citt Eoa |I'.'I=1|:'I'.'I:'|'|;‘2I.fllfl1. PROEZO01 h'SUh Toanna Smith Bl won Schleicher

[Ftswaar) [Bck Gresn [20/02/2001 [14032001 [T8 s bl Eiley
Y P B 0 T 0 A T B 0 B O O P 2 0

mm:ﬂ Deﬁ.lltwﬁdq:gl Rﬂm‘;qu.l;:lﬂ DMMIH

Control botton fanctions
Use of these remcves any eostng crdergrocuping

..":1 Crrder table by this column (ascendng)

i B e e e e |
=] | |!§,Ln|:dimunul: o

This example not only illustrates the way in which the data has been compiled, it aso highlights
some of the features available to the user while working with the data. The buttons at the bottom
of the table alow the ordering and grouping that is applied to be dtered. The table rows are

! the aliases specify alist of columns from the table which provide enough information to allow the user to
distinguish individual entriesfrom one another

EPCC-SS-2001-03: The TRACS Web Database 11

shaded according to whether they are future entries (the top three rows), current entries (the next
two rows) or past entries (the last two rows).

There are a number of links from the table to other pages. The row of links at the top of the page
(starting with [Visits][Visitors]...) dlow al the other tables generated by the routine to which the
user has access (access issues are discussed in the Web Database Views section) to be reached.
The same function is performed by the links from the table headings, except for the first column.
All the links in the body of the table, again excluding the first column, link to a view of the record
associated with that entry. The reason this is a view only is that it avoids the Situation where the
user might be want to change, for instance the contact associated with the visit, but would instead
actually replace the existing contact record by mistake.

The first column is the only place to provide links to editable records (and these are replaced by
links to the non-editable versions if the user does not have the proper access). The links in the
body of the first column alow the user to edit the record in that row. Further information, not
displayed in the table can aso be reached thisway. The link at the header of column one allows a
new record of the type being displayed to be created.

4.3. General Record Manipulator

Another very important feature of the Web Database is its ability to allow users to view, edit and
create individual database records. In the current implementation this functionality is contrdled
by a generad routine alowing it to be largely independent of the actua application of the
database.

Of al the issues involved in the design of the genera record manipulator, the most difficult was
how to structure it so that entire visit records could be built up in alogica manner. It would be a
trivial matter to update a single table entry, such as the information about one host. It would not
be so trivia, however, to organise it so that a visit could be declared and associated with a visitor,
a contact, a host and a machine, each of which must also be declared and perhaps even associated
with locations and addresses. Because of the way the database tables were linked together,
normaly in one-to-many relationships, it would not be an easy matter to update more than one
database table at atime. So it seemed that each table must be treated individualy, but this went
againgt the idea that the entire records (e.g. a visit and all its associations) should be declarable in
one go.

One solution to this was to make the content of the HTML page ater dynamically to reflect the
current circumstances. For instance the host associated with a visit could be displayed on the
same page as the location for that host, and the address for the location. Then if the host was
changed, the location and address could be changed at the same time. However, to implement this
would require the use of a client-side language such as Javascript. Such browsers are often poorly
supported across different platforms and browsers, which can lead to unreliable results when the
code is run on browsers other than the ones on which it was developed. In order to avoid this, the
output from the Perl scripts was limited to HTML, which is supported well across browsers.

The solution that was findly implemented (by ChangeData.cgi) was a variation of this, which
can be implemented using server-side page generation only. The page would not alter
dynamicaly, instead a single record would be displayed in ether a viewable format or editable
format as shown in figure 6.

EPCC-SS-2001-03: The TRACS Web Database 12

Figure6: An Editable Record Generated by ChangeData.cgi.

= H A h - M ded b dinb .
J File Edit “iew Favoites Tool: Help . |-
= =0 o = =
5 0D [rﬁ QA 6 @B 89 v
Back Faiiard Stop Refresh Horme Search Favortes Histomy I il Frint Edit RealGuide
J' Addrezz i@ hittp: /v epec.ed. ac.uk/~danieltracedb/S petem/ChangeD ata. cgiview=hoste+Bl editithosts L! (> Go |] Links **

|

|epCC Training and Research on Advanced Computing Systems

[Visits] [Visitors] [Machines] [Hosis] [Contacis] [Locations] [Addresses] [SysAdmins] [CPUs] [Monitors]
[Eeyhoards] [IP Data]

Edit Cmrrent Host

Host ID =

Name [Dan Mossop

Email ldaniel@epcc.ed.ac.uk

FPhone [0131 123458

Location Edinburgh University, Computer Science, 200 [Edit Details
blank) =]

Edinburgh University, Computer Science, 200
Hw, Zoology, 3456 -
Status available

|unavai|ab|e —

-

3] |_ |_r 5] Local infranet i

Apply changes Fesetvalues

The user can then reach other records by following the links on this page (for instance, in the
above diagram the [Edit Detailg] link will alow the sdlected location record to be edited). When
the records are accessed by these links, the original record is displayed at the top of the new page
in aread-only format.

The mechanism for handling new entries works in the same way as that for handling editing and
viewing. When a new entry is created it has blank entries that can then be edited as normal.

At each stage the changes must be applied to the database using the provided button, or the data
will be logt.

Because the genera record manipulation routine only alows you to move to linked records, all
the records that affect the current one, and no others can be reached. This helps to ensure that the
crestion and editing of recordsislogical.

Some of the tables in the database (the ones with no primary key) do not have HTML tables
created by the general HTML table generating routine discussed in the last section. As a result
these records can not be edited by linking from such atable. The way they are handled is that they
gppear in the individua record entry for the table to which they link (in the case of the current

EPCC-SS-2001-03: The TRACS Web Database 13

implementation it is dways in the visit record entries). The associations between the current
record and others, as defined by these tables, appear in alist. Each of these entries can be edited
and new entries created by following the links provided.

4.4. \Web Database Views

When the system is running, the Web Database will have severa classes of users. Examples of
these classes and their requirements are:

Adminigration — Must be able to access the entire database and the administration layer
(discussed in the next section).

Systems — Must be able to view, edit and create data relating to the EPCC terminas and their
installation. Should not be able to alter visitor records, etc.

EPCC-Staff — Should be able to view al the records, but not be able to make changes to the
data.

This functiondity is implemented by the Access.cgi file. For each user class it declares a list of
tables that can be accessed and whether that access permits editing or not. It also has a function
that can be called from any of the scripts and returns the access level for a given table. This
alows access to each table to be individually controlled.

In order to implement this it is necessary to have some way of deciding which class the user
belongs to. This is achieved by using the htaccess password protection facility [5]. When the
users attempt to access the site they are prompted for a username and password. If they enter a
valid password they gain access to the site, otherwise they do not. When they have access to the
dte an environmenta variable is set that contains the name of the user class. This alows the
correct view of the site to be displayed for the user.

Figure 7 shows a page created for the systems class. It can be seen that there are no linksto tables
such as the one holding the visitors' data. Attempts to access these tables result in an error page
being displayed.

EPCC-SS-2001-03: The TRACS Web Database 14

Figure 7: An Page Generated using the Systems L ogin.

3§ THACS Databars - Microeoft Intesnet Exploser prowidesd by Edmbagh Unoeersity

| Fle Edk Wew Fovoles Took Hel

3 - = o - = = =
A e A D oS B3 r o @
Bk s Slom FAekszh Hrme Gesich Fevoder Hidow Mal Pk Edi A=slGade
|Pddn: Iiﬂ bt s epec ed Ao ubs ~daresdd iacadh /S ysbemuD T sble o g Mesbleacou dems :_I f}ﬁu

Links ¥

| epCC I Training and Rezearch on Advanced Computing Systems
[Puchines] [Locations] [Addresces] [CFTs] Mondiors| [Eoyeands] [P Dua)

E
Table of CPU Records
Id Labal Serial No, Status Comuments
Aiemto il HUES onnnaat i T
2 [rieme i B Acceler aber EBCZ - D37
Briste dit] T5 Titra 11345134 ak: Al alear
Af ¥ g A| ¥ 5 Al ¥ s Af ¥ 5 4] ¥ i
Emmwﬁzilglﬂ D{ﬁ'u]twﬂniql.EJ lhmpuqhgl.?&l Iuﬁ'l]t‘wq‘iq:ﬂ

Conirol button functions
T=e of thmze remor=s 2y exostng ardecizroupng

..":! Order table by s colimm [ascending)
i | Oirder tahls by this columm (descendng) i
E! Group table by Huz cohmm

=
el [Eaimainre =

4.5. The Administrative L ayer

As it stands at the moment the combination of the general HTML table generator and the genera
record manipulating routine provides a method of viewing and editing all the data in the database,
as well as alowing new data to be added. It does not, however, allow data to be deleted. While
this prevents users from accidentally deleting records, it might at times be useful to remove
entries, if they have been entered twice by mistake, for instance. For this reason an administrative
layer has been created that alows direct editing of the database tables, but uses an HTML front-
end to avoid the need to enter SQL commands directly. The administrative layer was

implemented in read-only form in the initiad system, that is, it dlowed the contents of the
database tables to be viewed, but not edited.

During the SSP this has been expanded to include editing of entries and the deletion of rows.
There is a smple interface, with al the columns being represented as text boxes, and with each
row having a checkbox, alowing it to be marked for deletion. Figure 8 shows the main page of
the interface (there is also a page that asks for confirmation of the changes).

EPCC-SS-2001-03: The TRACS Web Database 15

Figure8: An Example of the Administration Layer.

e T T L — ————

| Fle Edk Wew Fovoles Took Hel

D B AR e D e A

Bk s Slom FAekszh Gesich Fevoder Hidow Mal Pk = A=slGade
Adchens [] bt dvems epoo e s b ~deeeds oo | Sgstemts doin oo TE Y alues - Goo | | Lnks
i o e L
| | | Training and Rezearch on Advanced Computing Systems

Edit the contacts Table
Commil changes Fesatvalias |

Delote cantarct - ple nanme | email comtact stamns

C I I |

F A Fndew b can [Hcien [reveiatie

B = Fictriny [[

||] fEmil von Sehlmet ||eniEed b |reaizhie
T;mu_ﬁmh—
| o

Page gevevated: The Sep 6 1731 21 BT 2001

()

&1 Done [T B local it

4.6. Outstanding | ssues

At the end of the SSP some issues remain with respect to the implementation of the Web
Database. The system as it currently stands is close to being fully operational. There are some
points to take into account however.

Passing some non-alphanumeric characters between pages as part of the URL argument causes an
incorrect page to be displayed. This is caused because the characters (such as < and >) are not
properly escaped before they are passed. Currently the URLs are encoded and decoded by
handwritten routines that can not handle all the necessary characters. These routines should be
replaced by the escape and unescape functions in the Perl CGI module.

The adminigration layer is fully functiona, in that it alows data in the database to be
manipulated directly (as detaled in section 4.5). There is a problem with the access restrictions,
however. At the point where the table to be displayed is sdlected from a pull down menu
everything seems to be working. But when the table name is submitted and a new page displayed
(the one that should display the table), some thing happens to remove the $ENV{REMOTE_USER}
environmental variable. Since this variable stores the login name of the current user, after this
point it is no longer possible to verify that the user has access to the administration layer. This
must be resolved if the administration layer is to be included in the final system.

EPCC-SS-2001-03: The TRACS Web Database 16

Currently the username and password used to access the database are hard-coded into the scripts.
Before the gSite is put into operation a more secure method of retaining the values throughout the
session should be maintained.

There are a few other aterations that could be made to the Web Database, that are not important
(in so far asthey do not serioudy affect the functionality) but would improve the user interface.

Currently al textboxes for data entry are a standard size, apart from the diary and date entry
boxes. These boxes are not necessarily large enough to properly display the full entry (athough it
can ill be entered). It would improve the display if the boxes matched the maximum size of the
entry.

Another feature that would improve the system would be the validation of the input before it is
applied to the database. This would alow, for instance, incorrect dates to be trapped and the user
informed.

Similarly it would be desirable if errors generated during database access were trapped and
reported.

EPCC-SS-2001-03: The TRACS Web Database 17

5. Conclusion

The Web Database was started with a view to tracking EPCC terminals, but has since grown to
encompass a significantly larger set of data. This project has aimed to develop an interface
capable of handling not only the current requirements of the system, but also future expansion of
the database. It has attempted to resolve this by the creation of general routines that are not fixed
to a specific database design.

There are some issues that still need to be addressed before the system is fully operational. These
are detailed in section 4.6. Despite this the system is sufficiently operable to demonstrate the
degree to which the needs of the TRACS programme have been realised.

One of the biggest proofs that the general routines are indeed robust enough to alow database
expansion, and are able to make this process fast came when the database had new tables added.
This happened near the end of the project when four new tables were appended to the database. In
adding the tables, only the definitions file needed to be edited, not any actua code. The only
exception to this was the diary that required the new feature of usng HTML textareas to handle
the potentialy large entries. This feature is now aso available to be used in future expansion. The
process of adding these tables was fast and simple, a vast improvement on having to creste a new
script for each table.

The system that has been implemented during the course of the programme is not a perfect
system and will certainly be subject to aterationsin the future. It does, however, provide a solid
base for these aterations. It is sufficiently functiona to allow it to be used with after only the
fairly minor changes detailed in 4.6. The flexibility of the system means that it should be easily
adaptable to handle changes to the underlying database, or even to be used for entirely different
databases.

EPCC-SS-2001-03: The TRACS Web Database 18

Appendix A

This appendix gives details of the perl scripts that implemented the TRACS web database at the start of the
Summer Scholarship Programme.

Query scripts

These scripts displayed a suitably formatted HTML table showing the data contained within a subset of the
columns in the database tables. These scripts were further divisible into ones that displayed all the rowsin
the examined columns and ones that displayed asingle row entry.

Of these scripts the following were completed to the point of providing the basic functionality required for
the system:

QueryCurrent St at us. cgi
QueryAl | Locat i ons. cgi
QueryAl | Visitors. cgi
Quer yAl | Host s. cgi
Quer yAl | Cont act s. cgi
Quer yAl | SysAdmi ns. cgi
Quer yMachi ne. cgi
QueryVisitor. cgi
QuerylLocation. cgi
Quer ySysAdmi n. cgi

Hi story. cgi

Vi sitorHistory. cgi

Still in need of work in order to achieve basic functionality were:

Quer yCont act . cgi
Quer yHost . cgi

Edit scripts

These scripts allowed alterations to be made to records already in the database. They consisted of HTML
forms, whose entries already contained the current data, which allowed data to be edited.

The following edit scripts offered basic functionality:
EditVisitor. cgi

Edi t SysAdmi n. cgi
Edi t Machi ne. cgi

Work was still needed to achieveit with:

Edi t Cont act . cgi
Edi t Host . cgi

EPCC-SS-2001-03: The TRACS Web Database 19

New scripts

These scripts allowed new records to be created. These were based on HTML forms with blank entries into
which the new data could be entered.

The scriptsthat offered this functionality were:

NewVi si t. cgi
NewVi si t or. cgi
NewHost . ht m
NewCont act . ht m
NewLocat i on. cgi
NewiVachi ne. cgi

Thefollowing script was not yet at thislevel of functionality:

NewSysAdmi n. ht m

In addition to these three categories, there were other scripts used by the system. A summary of them is
given here.

GetData.cgi

This acted as an intermediate between the Query and Edit scripts and the database. Each subroutine in
GetData generated an SQL query and posed it to the database. The resulting data was then returned to the
caling function (located in a Query or Edit script). GetData.cgi offered sufficient functionality to support
the calling functions.

AddData.cgi

In asimilar fashion to GetData, AddData acts as an intermediate between the database and scripts that write
data to it. Each subroutine in AddData generates an SQL statement to write data passed from the calling
function to the appropriate database tables.

AddData.cgi was only partially complete at the start of the SSP. It supported the following functionality:

Adding visitor records

Adding contact records

Adding machine records

Updating visitor records

Updating system administrator records

Other functionality required by the system included:

Adding host records

Adding location records

Adding visit records

Adding system administrator records
Updating contact records

Updating machine records

Updating host records

Updating visit records

Updating location records

EPCC-SS-2001-03: The TRACS Web Database 20

Admin.cgi

Admin.cgi alowed the user (typically an administrator) the ability to view the contents of the database
tables as HTML pages. This was read only at the start of the SSP, though it was hoped that it would be
extended to allow the database to be edited from these pages.

MiscUtils.cgi

Contained a collection of routines called by other functions, for instance generic HTML headers and
footers.

global.ph

global.ph was included by other scripts, because it contained a definition of the physical location of the
scripts and because it included the GetData.cgi and MiscUtils.cgi scripts

index.html

This page just redirected the user to the main page (i.e. QueryCurrentStatus.cgi).

EPCC-SS-2001-03: The TRACS Web Database 21

Appendix B

This appendix detailsthe filesin the TRACS Web Database system at the end of the SSP.
Access.cgi

Thisfile declares the tables that each user class can access. It also provides aroutine that allows other files
to determine the level of access the user has on agiven table.

Admin.cgi

Thisfileimplements the entire administration layer. It consists of six stages:
Allow selection of atable from alist.

Display thetable

Edit the table

Confirm the changes

Apply the changes to the database

agbrwdpE

ChangeData.cgi

This file implements the single record manipulation routine.
DatabaseUtils.cgi

Thisfile provides routines for retrieving data from the database.
Definitions.cgi

Thisfile contains definitions detailing the layout of the database and the format of the tablesto be
displayed by the general HTML table routine.

DrawTablecgi
Thisfileimplements the general HTML table routine.
Error.cgi

If an access error occurs, thisfileis called. It displays an error message and then redirects the user to the
intro page.

ExpandTable.cgi

This contains the routine for building general SQL queries. Itiscalled from DrawTable.cgi
GetData.cgi

This contains database accessing routines used by Admin.cgi

Intro.cgi

Thisfile displays an introduction to the interface.

EPCC-SS-2001-03: The TRACS Web Database

MiscUtils.cgi

This declares routines to generate the page headers.

SubmitData.cgi

Thisfile declaresroutines for entering datainto the database. Called by ChangeData.cgi
Images

This directory contains the graphics used by the interface.

Index.html

This page just redirects the user to the intro page.

EPCC-SS-2001-03: The TRACS Web Database

References

[1] The TRACS Homepage
www.epcc.ed.ac.uk/tracs

[2] The EPCC Summer Scholarship Programme Home Page
www.epcc.ed.ac.uk/ssp

[3] PerlinaNutshell — A Desktop Quick Reference
Ellen Siever, Steven Spainhour and Nathan Patwardhan
O'Reilly 1999
ISBN : 1-56592-286-7

[4] MySQL and mSQL
Randy Jay Y arger, George Reese and Tim King
O'Rellly 1999
ISBN : 1-56592-434-7

[5] Managing Internet Information Services
Cricket Liu, Jerry Peek, Russ Jones, Bryan Buus and Adrian Nye
O'Rellly 1994
ISBN : 1-56592-062-7

Biography

My name is Daniel Mossop.

| am 21 years old and come from Dumifries, in the South-West of
Scotland.

| am about to start my fourth and final year here at the University of
Edinburgh, studying Computer Science BSc (Hons).

I enjoy hillwaking, running and cycling.

| would like to thank my supervisors, Mario Antonioletti and Elena Breitmoser, for their tireless
input and advice.

