

EPCC-SS-2001-03

The TRACS Web Database

Daniel Mossop

Abstract

In the past tracking terminals allocated to visitors under the EPCC run TRACS programme [1]
has proved difficult. The TRACS web database system was started to provide a means of
recording the whereabouts of these terminals, and by the start of this project the underlying
database had expanded to hold details not just of the machines, but also of the visits. Further
growth of the database is likely in the future. This project aims to develop a more general and
complete web interface than the one that existed at the start of the project. The system uses a
MySQL database [4] that is operated on via CGI scripts. The scripts are written in Perl and make
use of the Perl Database Interface (DBI) [5].

EPCC-SS-2001-03: The TRACS Web Database 2

1. Introduction

1.1. EPCC and TRACS

EPCC was established in 1990 as part of the University of Edinburgh. The Centre was formed to
accelerate the uptake of High Performance Computing (HPC) systems throughout academia,
industry and commerce.

EPCC has been coordinating the EC-funded TRACS (Training and Research on Advanced
Computing Systems) programme since 1993 [1]. TRACS allows EC-resident academic and
industrial researchers to come to the EPCC for visits lasting between four to thirteen weeks.
During this time they can use EPCC resources to help with their research.

As part of the programme the visitor is given access to EPCC-owned terminals, which are
distributed to host departments, mainly located in Edinburgh, for the duration of the visit. It is
important that the locations of these terminals are recorded in a clear and consistent manner. In
order to facilitate this an on-line database accessible through the web is being developed which
aims to aid in tracking this hardware.

By the start of the Summer Scholarship Programme (SSP) [2] the range of information able to be
stored in the database had already increased beyond tracking the terminals. This new information
included details of the visits, the visitors, their hosts and their contacts. Further information may
need to be added in the future, so the design of the database and web front-end should be kept as
general as possible. Their implementations should also be kept independent of one another,
making the front-end portable to different database systems.

The aim of this project was to complete the existing implementation of the web interface and
generalising the implementation to facilitate future expansion. In addition, there were a number of
suggested improvements that could be made if time permitted, such as implementing a system to
allow data to be inserted to the database from an XML file (applications to TRACS are made via
the web, and the entered data is stored in an XML file).

EPCC-SS-2001-03: The TRACS Web Database 3

2. Initial System

A partial implementation of the TRACS system was already in place at the start of the SSP. This
is as a result of the work done by Mario Antonioletti, Elson Mourao and Elena Breitmoser since
winter 2000/01, when the project was started. Their implementation consisted of two main parts,
a database and a web interface.

2.1.The Database

Based on a design by Elson and extended by Mario and Elena, the database was in the form
shown in figure 1, at the beginning of the SSP.

Figure 1: The Initial TRACS Database.

In this form the database is able to store a range of data relevant to the TRACS programme. The
original purpose of the web database (to keep track of the location of EPCC terminals) is dealt
with by four tables in the above diagram: machine_items, installed_machines, locations and
addresses. The terminals consist of three items, a CPU, a monitor and a keyboard. Each of these
items makes up a single entry in the machine_items table. The table holds details of the items,
such as their serial number, their status (ie . whether they are in need of repair or not) and what the
item is (CPU, monitor or keyboard).

EPCC-SS-2001-03: The TRACS Web Database 4

The installed_machines table links to the machine_items table for three of its fields. These links
specify which CPU, monitor and keyboard are part of the terminal. The rest of the
installed_machines table holds details about its installation, e.g. who installed it and when. It also
links to the locations table, allowing the location of the terminal to be recorded. Each time a
terminal is installed somewhere a new installed_machines record will be created, without
removing details of its previous installations. This will allow the history of the terminals to be
retained. The locations table specifies a room within an institution (for instance, a university) and
links to the addresses table which specifies the city, street and number of the institution.
The database shown has expanded to include data other than details of the terminals. The visitors
table allows details of TRACS visitors’ name, nationality and email address to be stored.
Likewise the contacts, hosts, and SysAdmins tables allow details of the contacts and hosts (local
researchers collaborating with the visitor) and EPCCs’ systems administrators (who are
responsible for the distributed terminals) to be stored.

On their own, however, these tables would be of limited use. The usefulness of the database
comes from the fact that the research_visits, visit_machines, visit_contacts and visit_hosts tables
allow records in the previous tables to be associated with one another. In this way, details of a
TRACS visit can be built up, by associating a visitor with the visit(s) and then assigning (one or
several) machines, contacts and hosts to it.

The database in this form allows questions about the TRACS visits (such as: where is terminal X?
or, who is the contact for visitor Y?) to be answered simply.

The database is implemented in MySQL, a robust database product that implements a subset of
the SQL relational database programming language.

2.2.The Web Interface

While the above questions could be posed directly to MySQL on the command line, it is not really
a practical solution, since the queries may at times be quite complex and the users may have
limited knowledge of SQL. A better solution is to create an interface that allows the user to pose a
question easily, perhaps by selecting menu options or pressing buttons, and then generates the
corresponding database query. The query can then be passed to MySQL and the returned results
displayed in a sensibly formatted manner. Mario and Elena began the implementation of such an
interface. The interface is web based, making it accessible to distributed users. It is written in Perl
and uses the Perl Database Interface (DBI) and the Common Gateway Interface (CGI). DBI
provides a common method of connecting to databases, which not only allows it to connect to
MySQL, but also allows it to connect to many other databases products without the need to alter
the database accessing code. CGI allows the web server to dynamically generate HTML pages,
and through its use an interactive interface can be created that can be displayed on most Internet
browsers.

The figure 2 shows most of the Perl scripts that had been implemented by the start of the SSP (the
shaded boxes indicate completed scripts, the white boxes indicate partially complete scripts).

EPCC-SS-2001-03: The TRACS Web Database 5

Figure 2: The Initial Implementation Scripts.

There are four main categories of script featured in the figure 2. These scripts are the QueryAll
scripts, the Query scripts, the Edit scripts and the New scripts. The QueryAll scripts displayed all
records of a given type (visitor, host, etc.) in an HTML table. The script for displaying all
machine records also adds colour-coding to the records in the table to indicate whether they were
associated with past, present or future visits. The Query scripts displayed a single record of a
given type. These scripts sometimes displayed more information about the records than was
displayed by the QueryAll scripts (which provided a summary only). The Edit scripts allowed an
individual record of a given type to be edited, and the New scripts allowed an individual record of
given type to be created.

There were also other scripts at the start of the SSP, other than those shown on the diagram. Some
of these supported the Query and QueryAll scripts by providing routines to retrieve the relevant
records from the database. Others supported the Edit and New scripts by providing routines for
writing data to the database. See Appendix A for the full list of scripts that were implemented by
the start of the SSP.

EPCC-SS-2001-03: The TRACS Web Database 6

3. Objectives

This project aimed to implement the TRACS web database system to the point that it was
sufficiently functional to allow it to be put into use. There were a number of areas of development
that needed to be addressed to achieve this.

3.1. The Database

There is some information relevant to the TRACS visits that can not be accommodated by the
database as it was at the start of the programme. This includes data such as the IP addresses of the
terminals, details of the visitors’ arrivals and accommodation and diary records of meetings
between the contacts and visitors. The database should be extended to handle this.

3.2. A General HTML Table Generator

One requirement of the Web Database is that it should have a method of displaying summaries of
the information contained in the database. These summaries originally implemented as HTML
tables by the QueryAll scripts mentioned in the section on the initial system. This involved having
a script for each table that could be displayed. If this could be replaced by a single routine that
could generate all the required tables then the amount of time and new code necessary to handle
expansions to the system might be reduced.

3.3. The General Record Manipulator

As well as being able to view summaries of the data, the user also needs to be able to work with
individual entries, viewing them and editing them. The user also needs to be able to create new
entries. This functionality was originally partially implemented by the Query, Edit and New
scripts. A general routine that could replace these scripts could significantly increase the ease
with which database expansions could be handled.

3.4. Web Database Views

When the system is in full use there will be several classes of users. Some will be allowed to view
records only, while some will be allowed to create new records or alter existing ones. In order to
accommodate this an access system that gives different user classes different views of the
database could be implemented.

3.5. The Administrative Layer

There may be times when it would be desirable for a system administrator or similar to directly
alter the contents of the database. While this is possible by accessing the MySQL database
directly, an HTML front-end would provide a much simpler interface. The Administrative Layer
would also provide the only way of removing records from the database. Such a database view
would necessarily have a restricted access.

EPCC-SS-2001-03: The TRACS Web Database 7

4. Final System

This section will examine the extent to which the project objectives have been achieved during
the course of the SSP. It will examine each of them in turn, before finishing with a look at issues
that remain outstanding.

There have been major changes to the files that implement the system during the course of the
SSP. Figure 3 shows the main files that are now used, and how they interrelate.

Figure 3: The Current TRACS Scripts

DrawTable.cgi contains the routine that generates the HTML tables. The routine calls the SQL
query builder located in ExpandTable.cgi. From DrawTable.cgi it is possible to link to the
administrative layer implemented by Admin.cgi with support from GetData.cgi. It is also possible
to link to the individual record manipulator. This is implemented by ChangeData.cgi which
makes use of routines in DatabaseUtils.cgi and SubmitData.cgi. For a full list of the files now in
use, see Appendix B.

4.1. The Database

The database has been altered during the course of the SSP for two main reasons. One is that
changes to the database have allowed the implementation of the Web Interface to be simplified.
The other is that extensions to the database have made it possible to store more TRACS data than
before. As a result of these changes, the database appears as shown in figure 4.

EPCC-SS-2001-03: The TRACS Web Database 8

Figure 4: The Current TRACS database.

One of the first changes made to the database was to separate the machine_items table from the
initial database into three separate tables, one for each type of machine item: CPU, monitor and
keyboard (cpu_items, monitor_items and keybd_items respectively). This adds to the number of
tables in the database, but reduces the amount of data that must be stored since there is now no
need for an explicit field indicating the item type. Previously the installed_machines table was
joined to the machine_items table on three of its columns. Now it has the property that it is joined
to other tables on at most one of its columns (e.g. installed_machines is joined to cpu_items by
one column only – cpu_item_fk). This property is now true for all tables in the database. This
simplification helped to keep the amount and complexity of code required for a general table
routine (discussed in the next section) to a minimum. This was the only change necessary to
allow the completion of the implementation that had been started.

All other changes to the structure of the database have been made to extend the range of TRACS
data that can be stored. The ip_data table has been added to allow the IP addresses (and other

EPCC-SS-2001-03: The TRACS Web Database 9

related information) of terminals to be stored. This is linked to a new field in the
installed_machines table. The initial database was only able to specify one contact per visitor,
while in practice visitors can be assigned both a primary and secondary contact. This is now
addressed by the secondary_visit_contacts table. The secondary_visit_contacts table creates
associations in the same way the original visit_contacts table does, the table holds the keys of the
visit and contacts that are to be associated and specifies a start and end date for the association.
The research_visits table has been extended to include details about their arrival in Edinburgh
and their accommodation during the visit. During the visits TRACS visitors receive periodic
payments (subsistence, travel, etc.). This is now held in the expenses table, which links to the
research_visits table (ie. Each visit has associated expense records). Another table that links to
the research_visits table is diary. The diary table allows the TRACS contacts and hosts to record
the outcome of meetings with the visitors, and permits entries to be very large if necessary (up to
4Gb).

4.2. The General HTML Table Routine

One of the most important functions the Web Database must be able to perform is to summarise
selected data from the database. As happened in the initial implementation, the data is displayed
in HTML formatted tables. The aim of this section of the project was to produce a general routine
robust enough to be able to create tables from any given combination of columns from the
database.

On first inspection the database appeared to be not at all suited to a general routine. The layout
did not seem to be significantly regular to be described by a single routine. Changes to the
database were considered, in order to try and increase the regularity. Only one alteration was
made to this effect. The machine_items table was split into three tables: cpu_items, monitor_items
and keybd_items, as mentioned in the last section. Where previously there had been three links
from the installed_machines table to the machine_items table, there was now only one to each of
the three new tables. The condition that any two tables were linked on at most one entry was now
true for the whole database. This allowed the implementation to be simplified significantly. Since
this condition is assumed by the general table routine, it must be preserved by any future
expansion of the database.

The situation was also complicated by the tables that link between two other tables (ie.
visit_machines, visit_contacts and visit_hosts). Because they link between other tables they do not
have their own primary keys (they are uniquely defined by the composition of several columns).
This would mean that extra code would be required to handle these tables. However, the entries in
these tables only ever relate to a single TRACS visit. It seemed unnecessary to have a table
displaying all of the entries, when they are largely unrelated to each other. It was decided, then,
not to attempt to make the general table routine capable of handling these tables, but instead leave
them to be displayed by the general routine for manipulating individual entries.

This view of the database was now sufficiently simple to allow the creation of a general table
routine (which is in the file DrawTable.cgi). The first thing that had to be done was to declare
information about the structure of the database. This included specifying, in a definitions file (in
Definitions.cgi), the joins between tables. The SQL language actually permits these joins to be
declared when the tables are defined, but this feature is not implemented in the version of
MySQL currently in use for the database. Other details of the database were also written to the
definitions file. Some, like the names of the database tables and columns can actually be found
out directly from the database which would save the need for new declarations to be added when
the database is expanded, though currently this is not implemented. Others, like the display names

EPCC-SS-2001-03: The TRACS Web Database 10

for the columns and tables and the aliases for the tables are not available from the database, and
must be specified1. These are used to make the Web Database more informative to the user. A
further list of definitions was needed to declare, for each table that the routine would be used to
create, the names and locations of the columns to place in the table and the specifics of any
ordering and grouping on that table. This list also specifies the path from the table holding the
first column, to the tables holding the other columns of required data.

Since any HTML table the routine creates must be populated with data from the database, it was
necessary to write a general routine that produces SQL queries to extract the required data. By
using the path lists for the tables defined in the definitions file, the SQL query builder (found in
ExpandTable.cgi) is able to traverse the database joining together all the tables necessary to allow
all the relevant columns to be selected.

Once all the data has been obtained from the database, it is relatively simple to display it in a
HTML table. A sample output table is shown in figure 5.

Figure 5: A Table Generated By DrawTable.cgi.

This example not only illustrates the way in which the data has been compiled, it also highlights
some of the features available to the user while working with the data. The buttons at the bottom
of the table allow the ordering and grouping that is applied to be altered. The table rows are

1 the aliases specify a list of columns from the table which provide enough information to allow the user to
distinguish individual entries from one another

EPCC-SS-2001-03: The TRACS Web Database 11

shaded according to whether they are future entries (the top three rows), current entries (the next
two rows) or past entries (the last two rows).

There are a number of links from the table to other pages. The row of links at the top of the page
(starting with [Visits][Visitors]…) allow all the other tables generated by the routine to which the
user has access (access issues are discussed in the Web Database Views section) to be reached.
The same function is performed by the links from the table headings, except for the first column.
All the links in the body of the table, again excluding the first column, link to a view of the record
associated with that entry. The reason this is a view only is that it avoids the situation where the
user might be want to change, for instance the contact associated with the visit, but would instead
actually replace the existing contact record by mistake.

The first column is the only place to provide links to editable records (and these are replaced by
links to the non-editable versions if the user does not have the proper access). The links in the
body of the first column allow the user to edit the record in that row. Further information, not
displayed in the table can also be reached this way. The link at the header of column one allows a
new record of the type being displayed to be created.

4.3. General Record Manipulator

Another very important feature of the Web Database is its ability to allow users to view, edit and
create individual database records. In the current implementation this functionality is controlled
by a general routine allowing it to be largely independent of the actual application of the
database.

Of all the issues involved in the design of the general record manipulator, the most difficult was
how to structure it so that entire visit records could be built up in a logical manner. It would be a
trivial matter to update a single table entry, such as the information about one host. It would not
be so trivial, however, to organise it so that a visit could be declared and associated with a visitor,
a contact, a host and a machine, each of which must also be declared and perhaps even associated
with locations and addresses. Because of the way the database tables were linked together,
normally in one-to-many relationships, it would not be an easy matter to update more than one
database table at a time. So it seemed that each table must be treated individually, but this went
against the idea that the entire records (e.g. a visit and all its associations) should be declarable in
one go.

One solution to this was to make the content of the HTML page alter dynamically to reflect the
current circumstances. For instance the host associated with a visit could be displayed on the
same page as the location for that host, and the address for the location. Then if the host was
changed, the location and address could be changed at the same time. However, to implement this
would require the use of a client-side language such as Javascript. Such browsers are often poorly
supported across different platforms and browsers, which can lead to unreliable results when the
code is run on browsers other than the ones on which it was developed. In order to avoid this, the
output from the Perl scripts was limited to HTML, which is supported well across browsers.

The solution that was finally implemented (by ChangeData.cgi) was a variation of this, which
can be implemented using server-side page generation only. The page would not alter
dynamically, instead a single record would be displayed in either a viewable format or editable
format as shown in figure 6.

EPCC-SS-2001-03: The TRACS Web Database 12

Figure 6: An Editable Record Generated by ChangeData.cgi.

The user can then reach other records by following the links on this page (for instance, in the
above diagram the [Edit Details] link will allow the selected location record to be edited). When
the records are accessed by these links, the original record is displayed at the top of the new page
in a read-only format.

The mechanism for handling new entries works in the same way as that for handling editing and
viewing. When a new entry is created it has blank entries that can then be edited as normal.
At each stage the changes must be applied to the database using the provided button, or the data
will be lost.

Because the general record manipulation routine only allows you to move to linked records, all
the records that affect the current one, and no others can be reached. This helps to ensure that the
creation and editing of records is logical.

Some of the tables in the database (the ones with no primary key) do not have HTML tables
created by the general HTML table generating routine discussed in the last section. As a result
these records can not be edited by linking from such a table. The way they are handled is that they
appear in the individual record entry for the table to which they link (in the case of the current

EPCC-SS-2001-03: The TRACS Web Database 13

implementation it is always in the visit record entries). The associations between the current
record and others, as defined by these tables, appear in a list. Each of these entries can be edited
and new entries created by following the links provided.

4.4. Web Database Views

When the system is running, the Web Database will have several classes of users. Examples of
these classes and their requirements are:

• Administration – Must be able to access the entire database and the administration layer

(discussed in the next section).

• Systems – Must be able to view, edit and create data relating to the EPCC terminals and their

installation. Should not be able to alter visitor records, etc.

• EPCC-Staff – Should be able to view all the records, but not be able to make changes to the

data.

This functionality is implemented by the Access.cgi file. For each user class it declares a list of
tables that can be accessed and whether that access permits editing or not. It also has a function
that can be called from any of the scripts and returns the access level for a given table. This
allows access to each table to be individually controlled.

In order to implement this it is necessary to have some way of deciding which class the user
belongs to. This is achieved by using the htaccess password protection facility [5]. When the
users attempt to access the site they are prompted for a username and password. If they enter a
valid password they gain access to the site, otherwise they do not. When they have access to the
site an environmental variable is set that contains the name of the user class. This allows the
correct view of the site to be displayed for the user.

Figure 7 shows a page created for the systems class. It can be seen that there are no links to tables
such as the one holding the visitors’ data. Attempts to access these tables result in an error page
being displayed.

EPCC-SS-2001-03: The TRACS Web Database 14

Figure 7: An Page Generated using the Systems Login.

4.5. The Administrative Layer

As it stands at the moment the combination of the general HTML table generator and the general
record manipulating routine provides a method of viewing and editing all the data in the database,
as well as allowing new data to be added. It does not, however, allow data to be deleted. While
this prevents users from accidentally deleting records, it might at times be useful to remove
entries, if they have been entered twice by mistake, for instance. For this reason an administrative
layer has been created that allows direct editing of the database tables, but uses an HTML front-
end to avoid the need to enter SQL commands directly. The administrative layer was
implemented in read-only form in the initial system, that is, it allowed the contents of the
database tables to be viewed, but not edited.

During the SSP this has been expanded to include editing of entries and the deletion of rows.
There is a simple interface, with all the columns being represented as text boxes, and with each
row having a checkbox, allowing it to be marked for deletion. Figure 8 shows the main page of
the interface (there is also a page that asks for confirmation of the changes).

EPCC-SS-2001-03: The TRACS Web Database 15

Figure 8: An Example of the Administration Layer.

4.6. Outstanding Issues

At the end of the SSP some issues remain with respect to the implementation of the Web
Database. The system as it currently stands is close to being fully operational. There are some
points to take into account however.

Passing some non-alphanumeric characters between pages as part of the URL argument causes an
incorrect page to be displayed. This is caused because the characters (such as < and >) are not
properly escaped before they are passed. Currently the URLs are encoded and decoded by
handwritten routines that can not handle all the necessary characters. These routines should be
replaced by the escape and unescape functions in the Perl CGI module.

The administration layer is fully functional, in that it allows data in the database to be
manipulated directly (as detailed in section 4.5). There is a problem with the access restrictions,
however. At the point where the table to be displayed is selected from a pull down menu
everything seems to be working. But when the table name is submitted and a new page displayed
(the one that should display the table), some thing happens to remove the $ENV{REMOTE_USER}
environmental variable. Since this variable stores the login name of the current user, after this
point it is no longer possible to verify that the user has access to the administration layer. This
must be resolved if the administration layer is to be included in the final system.

EPCC-SS-2001-03: The TRACS Web Database 16

Currently the username and password used to access the database are hard-coded into the scripts.
Before the site is put into operation a more secure method of retaining the values throughout the
session should be maintained.

There are a few other alterations that could be made to the Web Database, that are not important
(in so far as they do not seriously affect the functionality) but would improve the user interface.

Currently all textboxes for data entry are a standard size, apart from the diary and date entry
boxes. These boxes are not necessarily large enough to properly display the full entry (although it
can still be entered). It would improve the display if the boxes matched the maximum size of the
entry.

Another feature that would improve the system would be the validation of the input before it is
applied to the database. This would allow, for instance, incorrect dates to be trapped and the user
informed.

Similarly it would be desirable if errors generated during database access were trapped and
reported.

EPCC-SS-2001-03: The TRACS Web Database 17

5. Conclusion

The Web Database was started with a view to tracking EPCC terminals, but has since grown to
encompass a significantly larger set of data. This project has aimed to develop an interface
capable of handling not only the current requirements of the system, but also future expansion of
the database. It has attempted to resolve this by the creation of general routines that are not fixed
to a specific database design.

There are some issues that still need to be addressed before the system is fully operational. These
are detailed in section 4.6. Despite this the system is sufficiently operable to demonstrate the
degree to which the needs of the TRACS programme have been realised.

One of the biggest proofs that the general routines are indeed robust enough to allow database
expansion, and are able to make this process fast came when the database had new tables added.
This happened near the end of the project when four new tables were appended to the database. In
adding the tables, only the definitions file needed to be edited, not any actual code. The only
exception to this was the diary that required the new feature of using HTML textareas to handle
the potentially large entries. This feature is now also available to be used in future expansion. The
process of adding these tables was fast and simple, a vast improvement on having to create a new
script for each table.

The system that has been implemented during the course of the programme is not a perfect
system and will certainly be subject to alterations in the future. It does, however, provide a solid
base for these alterations. It is sufficiently functional to allow it to be used with after only the
fairly minor changes detailed in 4.6. The flexibility of the system means that it should be easily
adaptable to handle changes to the underlying database, or even to be used for entirely different
databases.

EPCC-SS-2001-03: The TRACS Web Database 18

Appendix A

This appendix gives details of the perl scripts that implemented the TRACS web database at the start of the
Summer Scholarship Programme.

Query scripts

These scripts displayed a suitably formatted HTML table showing the data contained within a subset of the
columns in the database tables. These scripts were further divisible into ones that displayed all the rows in
the examined columns and ones that displayed a single row entry.

Of these scripts the following were completed to the point of providing the basic functionality required for
the system:

 QueryCurrentStatus.cgi
 QueryAllLocations.cgi
 QueryAllVisitors.cgi
 QueryAllHosts.cgi
 QueryAllContacts.cgi
 QueryAllSysAdmins.cgi
 QueryMachine.cgi
 QueryVisitor.cgi
 QueryLocation.cgi
 QuerySysAdmin.cgi
 History.cgi
 VisitorHistory.cgi

Still in need of work in order to achieve basic functionality were:

 QueryContact.cgi
 QueryHost.cgi

Edit scripts

These scripts allowed alterations to be made to records already in the database. They consisted of HTML
forms, whose entries already contained the current data, which allowed data to be edited.

The following edit scripts offered basic functionality:

 EditVisitor.cgi
 EditSysAdmin.cgi
 EditMachine.cgi

Work was still needed to achieve it with:

 EditContact.cgi
 EditHost.cgi

EPCC-SS-2001-03: The TRACS Web Database 19

New scripts

These scripts allowed new records to be created. These were based on HTML forms with blank entries into
which the new data could be entered.

The scripts that offered this functionality were:

 NewVisit.cgi
 NewVisitor.cgi
 NewHost.html
 NewContact.html
 NewLocation.cgi
 NewMachine.cgi

The following script was not yet at this level of functionality:

 NewSysAdmin.html

In addition to these three categories, there were other scripts used by the system. A summary of them is
given here.

GetData.cgi

This acted as an intermediate between the Query and Edit scripts and the database. Each subroutine in
GetData generated an SQL query and posed it to the database. The resulting data was then returned to the
calling function (located in a Query or Edit script). GetData.cgi offered sufficient functionality to support
the calling functions.

AddData.cgi

In a similar fashion to GetData, AddData acts as an intermediate between the database and scripts that write
data to it. Each subroutine in AddData generates an SQL statement to write data passed from the calling
function to the appropriate database tables.

AddData.cgi was only partially complete at the start of the SSP. It supported the following functionality:

 Adding visitor records
 Adding contact records
 Adding machine records
 Updating visitor records
 Updating system administrator records

Other functionality required by the system included:

 Adding host records
 Adding location records
 Adding visit records
 Adding system administrator records
 Updating contact records
 Updating machine records
 Updating host records
 Updating visit records
 Updating location records

EPCC-SS-2001-03: The TRACS Web Database 20

Admin.cgi

Admin.cgi allowed the user (typically an administrator) the ability to view the contents of the database
tables as HTML pages. This was read only at the start of the SSP, though it was hoped that it would be
extended to allow the database to be edited from these pages.

MiscUtils.cgi

Contained a collection of routines called by other functions, for instance generic HTML headers and
footers.

global.ph

global.ph was included by other scripts, because it contained a definition of the physical location of the
scripts and because it included the GetData.cgi and MiscUtils.cgi scripts

index.html

This page just redirected the user to the main page (i.e. QueryCurrentStatus.cgi).

EPCC-SS-2001-03: The TRACS Web Database 21

Appendix B

This appendix details the files in the TRACS Web Database system at the end of the SSP.

Access.cgi

This file declares the tables that each user class can access. It also provides a routine that allows other files
to determine the level of access the user has on a given table.

Admin.cgi

This file implements the entire administration layer. It consists of six stages:
1. Allow selection of a table from a list.
2. Display the table
3. Edit the table
4. Confirm the changes
5. Apply the changes to the database

ChangeData.cgi

This file implements the single record manipulation routine.

DatabaseUtils.cgi

This file provides routines for retrieving data from the database.

Definitions.cgi

This file contains definitions detailing the layout of the database and the format of the tables to be
displayed by the general HTML table routine.

DrawTable.cgi

This file implements the general HTML table routine.

Error.cgi

If an access error occurs, this file is called. It displays an error message and then redirects the user to the
intro page.

ExpandTable.cgi

This contains the routine for building general SQL queries. It is called from DrawTable.cgi

GetData.cgi

This contains database accessing routines used by Admin.cgi

Intro.cgi

This file displays an introduction to the interface.

EPCC-SS-2001-03: The TRACS Web Database 22

MiscUtils.cgi

This declares routines to generate the page headers.

SubmitData.cgi

This file declares routines for entering data into the database. Called by ChangeData.cgi

Images

This directory contains the graphics used by the interface.

Index.html

This page just redirects the user to the intro page.

EPCC-SS-2001-03: The TRACS Web Database 23

References

[1] The TRACS Homepage
 www.epcc.ed.ac.uk/tracs

[2] The EPCC Summer Scholarship Programme Home Page
 www.epcc.ed.ac.uk/ssp

[3] Perl in a Nutshell – A Desktop Quick Reference
 Ellen Siever, Steven Spainhour and Nathan Patwardhan
 O’Reilly 1999
 ISBN : 1-56592-286-7

[4] MySQL and mSQL
 Randy Jay Yarger, George Reese and Tim King
 O’Reilly 1999
 ISBN : 1-56592-434-7

[5] Managing Internet Information Services
 Cricket Liu, Jerry Peek, Russ Jones, Bryan Buus and Adrian Nye
 O’Reilly 1994
 ISBN : 1-56592-062-7

Biography

My name is Daniel Mossop.

I am 21 years old and come from Dumfries, in the South-West of
Scotland.

I am about to start my fourth and final year here at the University of
Edinburgh, studying Computer Science BSc (Hons).

I enjoy hillwalking, running and cycling.

I would like to thank my supervisors, Mario Antonioletti and Elena Breitmoser, for their tireless
input and advice.

