
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

EPCC-SS-2001-10

DPD: A Java implementation

Jo Hoffmann

Abstract

The following report will document the development of a Java program to simulate
Dissipative Particle Dynamics (DPD). In the first section the physics behind DPD will
be explained. This is followed by a short analysis of the structure of an existing Fortran
implementation on which the Java code is partially based. The remainder of this document
is devoted to explain the internals of the Java implementation.

EPCC-SS-2001-10 2

Contents

1 Introduction 3
1.1 The basics of DPD . 3
1.2 The basics of Lees Edwards boundaries. 4

2 The Java implementation 4
2.1 The Class model . 5

2.1.1 The main classes . .. 5
2.1.2 Helper classes. 6

2.2 Class relationships . 8
2.3 How it works together . 10
2.4 Limitations . 10
2.5 To Be Done . 10

3 Java, OO and the science 11
3.1 Performance issues . 11
3.2 Benefits of using OO features . 12
3.3 Conclusion . 13

4 Appendix A: Complexity of the force calculation 14

5 Appendix B: Input parameters and algorithms 15
5.1 Algorithms . 15

5.1.1 Force calculation . 15
5.1.2 Velocity and Position. 16

6 Appendix C: Test results 17
6.1 Settings for graph energy_1 .. 17
6.2 Settings for graph energy_2 .. 17

List of Figures

1 A model for Lees-Edwards boundary conditions 4
2 The simulation space hierarchy . 6
3 The particle hierarchy. 7
4 The CompoundParticle hierarchy. 8
5 The particle hierarchy and their relationships 9
6 The forces that need to be calculated with 4 particles.. 14
7 Kinetic energy of 1000 particles over 10000 iterations: energy_1 has SIGMA=0.0,

energy_2 has SIGMA=1.0 .. 19

EPCC-SS-2001-10 3

1 Introduction

The aim of the project was to implement a new Dissipative Particle Dynamics simulation with
Lees Edwards boundary conditions. Previous efforts on DPD simulations here at Edinburgh
already produced a Fortran MPI code. But because it was lacking flexibility in use and ease of
maintainability it was decided to produce a new code. The main requirement for the new code
was to be parallelised with OpenMP as it would mainly be used on shared memory systems.
Other advantages of using OpenMP are a slightly better maintainability of the sequential code
but on the downside the loss of flexibility in later use of the code (shared memory systems only).

C, C++ and Fortran have traditionally been the languages of choice for programming tasks of
this kind. We chose Java due to reasons of portability its OO features and in order to gain
more experience on using it for scientific applications. On the downside one can argue that
Java codes are slower than their C or Fortran counterparts but recent benchmarks show that the
performance difference only lies around a factor of 2 to 4 [2] and with most recent advances in
JIT compilers pushing this factor even further down. The overhead that JIT compilers introduce
is not of paramount importance for most high performance computing applications either as the
total execution time is usually much larger than the compilation time.

1.1 The basics of DPD

Dissipative Particle Dynamics (DPD) is similar to Molecular Dynamics (MD) in that a system
is fully defined through the momenta and positions of all the particles in the fluid. The fact
that MD deals with individual molecules makes it computationally so intense that it can only
be used for small time scales and simulation spaces. As a result complex fluid phenomena and
properties such as fluid flow and hydrodynamic behaviour are impossible to simulate on large
scales. DPD on the other hand solves these problems by simulating larger lumps of fluid instead
of individual molecules. It has first been presented by Hoogerbrugge and Koelman in 1985 [1].

The algorithm has 2 main steps.

The impulse step:
~fi(t) =

X
j 6=i

(~F c(~rij) +
~F d(~rij ; ~vij) + ~F r(~rij) (1)

with ~rij = ~ri � ~rj , where~ri is the position of particlei

and ~vij = ~vi � ~vj , where~vi is the velocity of particlei

~F c is a conservative force

~F d is a dissipative force

~F r is a random force

And the propagation step:

~rti =
~

rt�1i + ~f ti
�t2

mi
(2)

where~rti is the position of particlei at timet.

From the equation we can see that we need to sum over all particle pairsij with j 6= i in order
to get the total force acting on particlei. In order to conserve momentum we need to have

EPCC-SS-2001-10 4

~fij = � ~fji. The force ~fij will be zero for particlesi andj separated by a distancej ~rij j > rc
whererc is called the cut-off-distance.

1.2 The basics of Lees Edwards boundaries

Lees Edwards boundary conditions simulate a fluid under extreme shear conditions. Which
means that in one direction, say y for instance, a special shear force is acting. In 1 a box A is
shown with its images B and C in the yz planes. The particles in A have a random starting ve-
locity with their root mean square equal to the mean thermal velocity. Furthermore all particles
have an additional velocity in the y direction

�vy = vd

�
x

L
�
1

2

�
(3)

wherex is the x-component of the position of the particle andL is the length of the simulation
space (in the x direction in case xyz dimensions differ).

-�
..........

..........
..........

..........
.......

6
x

y

?

? ?

-

�

P”P’

P

Vd

Vd

A

B

C

Figure 1: A model for Lees-Edwards boundary conditions

If a particle leaves the box at some pointP at time t = nt _�t it will be reintroduced atP 00

instead ofP 0 with its velocity ~v0 = (v0x; v
0
y; v

0
z) set to:

v0x = vxv
0
y = vy + vdv

0
z = vz (4)

The displacement in the y direction of the pointP 00 compared toP 0 is nt _vd _�t� bnt _vd
_�t

L cL

2 The Java implementation

Even though Java is an Object Oriented language it is not necessary to stick to good OO practice
to write a Java program. But as I am a principled person there was no other choice as to stick to
the best principles I knew of. Initially, this meant drawing a model of the class hierarchy.

EPCC-SS-2001-10 5

2.1 The Class model

While some of the detail in the classes changed over time the main features remained the same
throughout the project.

2.1.1 The main classes

The two main components in the simulation are the particles and the space in which they flow
around. Because I thought that they would be the more complex parts and would be most likely
to change or be enhanced I decided to create a full hierarchy with interface, abstract and final
classes.

The result for the simulation space is shown in figure 2. It shows an interface with methods
calcForces() and calcVelPos() for doing the force calculation and the velocity and position up-
date respectively. The other three methods are not useful in the way the space classes are used.
Having a working simulation I would rather not have an interface for the space classes but just
an abstract class. When I started off with the model I didn’t quite know yet what would change
between different boundary conditions and where it would be reflected in the code. Therefore
my first approach was to have the calcForces() and calcVelPos() methods only implemented in
the final classes, while the set up of a space would be coded into the abstract class. As it turns
out the force calculation is exactly the same whereas the set up of the space differs from cyclic
to Lees-Edwards boundary conditions. In the end all the functionality is implemented in the
abstract class and the final classes only override some of the methods. For the CyclicSpace this
is the velocity and position calculation and for the LE_Space this is also the method for creating
the cut-off-boxes. Each final Space class has a main method that creates an instance of itself
and starts the simulation.

The particle hierarchy is also setup with interface, abstract and final class. Unlike the space this
setup seems more useful to me at the moment of writing this document. This is probably due
to the fact that particles are extensively handled by other classes in the simulation and therefore
need a proper interface. Figure 3 shows the Particle classes. The Particle interface defines a
method to calculate the force between 2 particles (this and p), a method for the velocity and
position update plus other methods to retrieve the force, velocity, position, type id and a type
object. In order to stay flexible I introduced a class Type that contains all physical parameters
of the different particles but more on that later. DPDParticle is then the abstract class that
implements all methods in the interface except for the force velocity and position calculations.
On top of those it also defines methods to add or set the force, velocity and position. The
set methods are provided to allow greater flexibility in setting up a simulation while the add
methods are mainly needed for the LE_Space. Monomer is then a complete implementation of
a Particle. It implements the methods for the force, velocity and position calculations.

But beside Monomer there are also Dimers and Colloids. They are not particles in the sense
used in this code. They are rather structures of Monomers where the force calculation is done
on the individual Monomers, but the position and velocity update needs to look at the structure
as a whole. They are therefore united under the CompoundParticle interface (see figure??).
This interface only defines two methods: getParticles() to retrieve the individual particles (in
this case Monomers) that make up the CompoundParticle and calcVelPos() for the velocity and
position update. At the moment Dimer is the only implementation of the interface. Beside the

EPCC-SS-2001-10 6

DPDSpace

DIMENSION:Vector3d
DENSITY:double
CUTOFFDIST:double
iterations:int
NUMBEROFPARTICLES:int
NUMBEROFDIMERS:int
NUMBEROMONOMERS:int
TIMESTEP:double
VOLMFRAC:double

int getNumOfParticles()
Vector3d getDimension()
double getDensity()
void createParticles()
void createCutOffBoxes()
void calcForces()
void calcVelPos(Vector3d strain)

<<Interface>>
Space

int getNumOfParticles()
double getDensity()
Vector3d getDimension()
void calcForces()
void calcVelPos(Vector3d strain)

LE_Space

SHEAR:double

void createCutOffBoxes()
void calcVelPos(Vector3d strain)

CyclicSpace

void calcVelPos(Vector3d strain)

<<realize>>

Figure 2: The simulation space hierarchy

methods from the interface it also implements methods addVelocity() and addPosition() that are
again used in LE_Space.

A class used within Monomer and mentioned already earlier is Type (figure 3. It contains
information about the nature of the particle. At the moment it has properties like mass and a
numerical id to identify the particle types. It also contains a two dimensional static array to hold
the specific forces that act between different particle types. All methods in this class are just
concerned with retrieving the different parameters.

A class not so apparent at first is the CutOffBox. In order to reduce the complexity of the force
calculation the space is split up in smaller boxes, the cut-off-boxes. Instead of then considering
all particles for calculating the force on a particle one only needs to consider the particles in
that cut-off-box and in its neighbouring boxes. The CutOffBox is also responsible for moving
particles around. That means after the new position of the particle has been calculated the
CutOffBox has to find out whether the particle moved out or not. When the particle moved out,
the box has to identify the neighbour which it moved to and pass it on. Therefore a CutOffBox
also needs to hold a list of its neighbours.

2.1.2 Helper classes

Beside the classes mentioned until now there are others that either provide additional facilities
or that try to make life easier. One of the classes that makes life easier is Vector3d. As the
name might suggest it deals with 3 dimensional Vectors. Methods include add, sub, dotProduct,

EPCC-SS-2001-10 7

<<Interface>>
Particle

Type getType()
int getTypeId()
Vector3d getForce()
Vector3d getVelocity()
Vector3d getPosition()
void calcForce(Particle p)
void calcVelPos(double timestep)

DPDParticle

Type type
Vector3d force
Vector3d position
Vector3d velocity

void addForce(Vector3d forceInc)
void addVelocity(Vector3d velInc)
void addPosition(Vector3d posInc)
Vector3d getForce()
Vector3d getPosition()
Vector3d getVelocity()
void setForce()
void setVelocity()
void setPosition()
Type getType()
int getTypeId()

Monomer

void calcForce(Particle p)
void calcVelPos(double timestep)
double getMass()
Vector3d positionDiff(Particle p)

Type

id:int
mass:double
specForce:double

int getId()
double getMass()
double getSpecForce(int i, int j)

<<realize>>

Figure 3: The particle hierarchy

scalarMul and others. All methods that would be natural candidates for returning a Vector3d
object actually don’t but instead modifythis object. This is meant to increase performance by
reducing the number of object creations. But this has obviously some negative effects due to
more obscured programming and the fact that in certain circumstances the original vector is
not meant to change. For instance calculating the difference of two velocities without changing
the original vectors. In that case the original vector needs to be cloned prior to performing the
operation. This then leads to more overhead as the clone method defined in java.lang.Object
returns an Object and hence the object has to be downcast to a Vector3d.

Vector3d velocityDif = (Vector3d)velocity_1.clone();\\
velocityDif.sub(velocity_2);\\

Classes providing additional facilities are DPDInput and FluidStats. DPDInput is able to create
and edit input files that contain the parameters to set up a simulation. Parameters include the
number of particles, the density of the fluid, the number of iterations and so on. The methods
deal mainly with the creation of an input file by asking for user input while explaining how the
input needs to be formated and offering default values for most fields. A main method enables to
start the process from the command line even though the provided methods can be used on their
own. The file that DPDInput creates is a serialized instance of itself. This has the advantage of
being easy to read in, as no parsing has to be done, or write to disk, as no file structure needs to
be created. But this represents a big disadvantage as well. Any change in the instance variables
(even changing a name) will render old input files unusable as the file descriptor changes.

EPCC-SS-2001-10 8

<<Interface>>
CompoundParticle

Collection getParticles()
void calcVelPos(double timestep)

Colloid

Collection getParticles()
void calcVelPos(double timestep)

Dimer

double distance

Collection getParticles()
void calcVelPos(double timestep)
void addPosition(Vector3d posInc)
void addVelocity(Vector3d velInc)
Vector3d getPosition()

<<realize>> <<realize>>

Figure 4: The CompoundParticle hierarchy

FluidStats is meant to provide the methods to do analysis on the overall state of the fluid. But
at the moment it only provides 2 methods to test whether the simulation is stable and behaves
properly. They are calcMonomerPhysics which calculates the average kinetic Energy of all
Monomers in the fluid. And dimerTest which checks whether the dimers start aligning.

2.2 Class relationships

The UML diagram shown in figure 5 shows the complete class structure with their relationships.
For instance DPDSpace contains 1 or more CutOffBoxes, 0 or more Particles and 0 or more
CompoundParticles. This basically means that there needs to be a Collection for Monomers,
Dimers, Colloids and CutOffBoxes.

A CutOffBox on the other hand contains 0 or more Particles but no CompoundParticles. In case
of the Colloid the problem is trivial. A Colloid is so big that it never fits in a single CutOffBox.
The dimers are a bit more tricky as they easily fit into a CutOffBox. But what happens if one of
the Monomers is in one box but the other in a second one. Well at first I tried to calculate the
position of the centre of mass and depending on it have the Dimer in one or the other CutOffBox.
While that might work I still found that it would be easier to have the dimers only within the
Space and have just their individual Monomers in the CutOffBoxes. Like this they can both be
in different boxes. So in the end the CutOffBox needs basically only a Collection to hold the
individual Monomers. But that means that the Monomers are once referenced to in the Space
class and once in the CutOffBox.

Finally a Dimer has exactly 2 Monomers and a Colloid has 3 or more Monomers.

EPCC-SS-2001-10 9

DPDParticle

Type type
Vector3d force
Vector3d position
Vector3d velocity

void addForce(Vector3d forceInc)
void addVelocity(Vector3d velInc)
void addPosition(Vector3d posInc)
Vector3d getForce()
Vector3d getPosition()
Vector3d getVelocity()
void setForce()
void setVelocity()
void setPosition()
Type getType()
int getTypeId()

Monomer

void calcForce(Particle p)
void calcVelPos(double timestep)
double getMass()
Vector3d positionDiff(Particle p)

<<Interface>>
Particle

Type getType()
int getTypeId()
Vector3d getForce()
Vector3d getVelocity()
Vector3d getPosition()
void calcForce(Particle p)
void calcVelPos(double timestep)

Colloid

Collection getParticles()
void calcVelPos(double timestep)

Dimer

double distance

Collection getParticles()
void calcVelPos(double timestep)
void addPosition(Vector3d posInc)
void addVelocity(Vector3d velInc)
Vector3d getPosition()

DPDSpace

DIMENSION:Vector3d
DENSITY:double
CUTOFFDIST:double
iterations:int
NUMBEROFPARTICLES:int
NUMBEROFDIMERS:int
NUMBEROMONOMERS:int
TIMESTEP:double
VOLMFRAC:double

int getNumOfParticles()
Vector3d getDimension()
double getDensity()
void createParticles()
void createCutOffBoxes()
void calcForces()
void calcVelPos(Vector3d strain)

CutOffBox

zone:CutOffBox
size:double
position:Vector3d
isLowBoundary:boolean
isUpBoundary:boolean
shearedVelocity:Vector3d

void isLowBoundary(Vector3d shearV)
void isUpBoundary(Vector3 shearV)
void setNeighbours(CutOffBox b, int x, int y, int z)
void calcForces()
void calcVelPos(Vector3d strain)

Type

id:int
mass:double
specForce:double

int getId()
double getMass()
double getSpecForce(int i, int j)

<<Interface>>
CompoundParticle

Collection getParticles()
void calcVelPos(double timestep)

<<realize>>

2

3..*

1..*

0..*

0..*

<<realize>>

<<realize>>

0..*

Figure 5: The particle hierarchy and their relationships

EPCC-SS-2001-10 10

2.3 How it works together

The Space classes together with the input file control how the simulation is setup and takes
place. The main method of a Space class creates an instance of itself by calling its constructor.
The constructor reads in a DPDInput object and initialises its variables. Then it starts creating
the CutOffBoxes and finally the particles. The particles are created according to the definitions
in the DPDInput object. The DPDInput class has 2 instance methods createMonomer and cre-
ateDimer to create the respective particles. Both methods need to be changed in order to create
more complex setups. Each particle is then inserted into the particle collection of the Space
class and in addition into the proper CutOffBox.

Then the main method goes on and executes a loop as many times as requested in the input
file. Within the body of the loop the calcForces and calcVelPos methods are called on the Space
object. These methods iterate over the CutOffBoxes and call their calcForces and calcVelPos
methods. The CutOffBox methods simply iterate over the particles they contain and call their
respective methods.

2.4 Limitations

A major limitation at the moment is the serialization of the DPDInput class. This is only a good
solution if the probability of changing the data in the class is very low. But even the slightest
change (adding a transient field for instance) will change the serialVersionUID and hence make
all older input files useless. At this stage the Class is still very unstable. It is very likely that
other parameters will be added or changed in order to make the setup of a simulation as flexible
as possible without the need to change methods and recompile the code.

In addition because DPDInput is relying on Type any change to Type will have the same effect.
Furthermore I had to introduce 2 other classes DimerProto and ColloidProto to store the basic
information to create Dimers and Colloids. DimerProto only stores the Type of each of the
Monomers it contains and the distance by which they are apart. The ColloidProto class is not
yet implemented and hence implementing it will change the serialized object.

A cure to the problem could be to change the output file to either a text file or a binary file with
a well defined format. The text file would have the advantage of editing it with any text editor.

Another problem is the use of static variables in DPDSpace and CutOffBox. As I took most
of the algorithms from a Fortran code it seemed necessary to have global variables all over the
place. So at first I made all variables in DPDSpace static. Now I cope with just CUTOFFDIST
and DIMENSION to be static. They are used in classes like FluidStats, Monomer and DPDPar-
ticle. In CutOffBox some of the variables like size and sizeSquare are static as well. This is
mainly for performance reasons as those values are extensively used during the force calcula-
tion.

2.5 To Be Done

Despite a lot of work their is still a lot of work left. Further tests are required to ensure correct
behaviour. Initial results are included in section 6.

EPCC-SS-2001-10 11

After that the first concern will probably be to parallelise the code with either OpenMP or Java
Threads. As my experience with parallel applications is very limited I am not able to judge on
how easy it will be to change the sequential code.

Another task is the development of a GUI. The first stage will be requirements gathering to see
what kind of parameters the users want to control and what information they want to get out
of it. This will also mean to introduce more useful methods into the FluidStats class to do the
necessary calculations

And finally I think that most people would like to know how the code compares to the original
Fortran code. But that would first of all mean to make some basic changes in the Fortran code.

3 Java, OO and the science

Writing Java programs is by most people considered to be good fun (and it certainly is by me).
But I have to admit that at first I had a bit of a restraint towards Java and wasn’t at all convinced
by its usefulness before I actually wrote some code myself. The ease with which you can create
and modularise complicated tasks is amazing. But the fact that so much of the complexity is
hidden away brings some new difficulties mainly in the ability to judge performance.

3.1 Performance issues

One of the very nice features of Java is certainly the garbage collection. No need to worry
about freeing memory it is all done for you. But to check for unused objects takes valuable time
that could be spend on your computation. It becomes apparent that minimising the creation of
objects and maximising their reuse will be highly beneficial to the performance of a program.
It will be beneficial in 2 ways. First computation time for garbage collection is reduced and
second less memory is unnecessarily wasted.

Iterators are a common way of accessing a Collection of data in OO programming. An iteration
over a Vector might look like this:

Vector v;
.
.
Iterator iter = v.iterator();
while(iter.hasNext()){

Object o = iter.next();
.
.
}

While that is perfectly alright the use of the hasNext method will slow the loop down. Using a
for loop with the bounds of the iteration predefined will always be faster.

Vector v;
.
.
int vectorEnd = c.size();

EPCC-SS-2001-10 12

for(int i=0; i<vectorEnd;i++){
Object o = v.get(i);

.

.
}

An alternative, which gives slightly poorer performance than a for loop, but providing the ability
to use Iterator features like remove(), is the following.

Vector v;
.
.
Iterator iter = v.iterator();
try{

while(true){
Object o = iter.next();
.
.

}
} catch(NoSuchElementException e){}

Polymorphism will have an effect on performance as well. A Monomer can appear as a DPDPar-
ticle Particle and an Object. For instance inserting a Monomer into a Vector will upcast it to an
Object. So requesting a Monomer from a vector will return an Object that can potentially be a
Monomer but before it is it needs to be explicitly downcasted. This takes up some computational
resources as the cast process needs to make sure that the Object is indeed a Monomer and if it
isn’t throw a ClassCastException.

Good OO style requires instance variables to be accessed through methods and never directly,
as the methods can ensure that the data is not corrupted. A method call will however be more
expensive than direct access as some stack operations take place.

All the potential problems I highlighted suggest that doing it the OO way is bad for performance.
In HPC performance is important, hence a balance must exist between good OO style code
readability and performance. Having listed all the potential drawbacks the advantages of OO
designs will now be considered.

3.2 Benefits of using OO features

Imagine a scenario where the 3d vector representation needs to be changed (eg to improve
performance). If instance variables had been addressed directly the whole code may require
modification. However by using methods to access them only minimal modifications are re-
quired.

This is the benefit of encapsulation. The internal workings of the classes are hidden away. The
user of a class does not need to know how the data is internally represented but instead a well
defined interface provides access to the data. So later changes for whatever reasons won’t affect
the users of a class as long as the methods keep producing the results they are meant to.

Another plus point is inheritance. It might be that a new type of Monomer using different
algorithms for force and velocity calculations needs to be introduced. In that case the new

EPCC-SS-2001-10 13

class will simply extend DPDParticle and implement the relevant methods but inherit all others
including instance and class variables from DPDParticle. Testing the new class will be limited
to the newly implemented methods as the inherited ones had been tested previously.

OO programming also promotes modularity. An application brakes down very naturally with
OO techniques. Of course thought is necessary to setup the class model but once that is done
programming becomes much easier. With a thoughtful design class interdependencies can be
eliminated (or minimised) and make coding much easier as you don’t necessarily need to have
the details of other parts of the code in your head.

3.3 Conclusion

Modularity, code structure and reuse are the major advantages of OO programming. This will
result in better maintainability and hence the possibility of extending an application easily with
additional functionality. From my experience it seems easier to write inefficient OO codes than
procedural programs. But by knowing the potential pitfalls it will be easy to work around them.

Earlier on I mentioned that even programming in Java doesn’t mean that one has to stick to good
OO programming style. I chose to stick to the best OO practice I know of and tried to minimise
things like static variables and straight access to instance variables. This wasn’t too easy as I
took most of the algorithms from the Fortran code that was seeded with global variables. I also
designed a class hierarchy for the simulation with interfaces, abstract and final classes. This
can be overkill in some circumstances and might have an effect on the performance too. For
instance the calcForce(Particle p) method is in the Particle interface defined to take a Particle
as parameter. And so it the calcForce method for Monomer needs to accept a Particle too. But
before starting this particle needs to be downcast to Monomer. Making the design less abstract
could improve the performance (but I don’t know how significant it is).

On the other hand it is also possible to write the whole code by squeezing it into a single source
file. Disadvantages of this approach are difficult maintainability and difficulties to work on the
code in a team.

My final verdict is for a code that should last many years, be extensible and maintainable a
decent OO design will be necessary. For small one of codes that are not likely to be widely used
a more relaxed approach can probably be taken. But who knows where a program ends up?

EPCC-SS-2001-10 14

4 Appendix A: Complexity of the force calculation

In order to calculate the force acting on one particle all other particles need to be considered.
This is the most basic conclusion from the algorithm. That means havingn particlesn � (n� 1)

iterations need to be performed to calculate all the forces. Luckily there are a number of im-
provements to this as the simulation preserves momentum:

fij = �fji

wherefij is the force between particlesi andj.

The amount of work simplifies ton�(n�1)2 the sum of the firstn� 1 numbers.

?
��

? ?

$'
?

6" %6
?

$'

?l lll� - � - � -

Figure 6: The forces that need to be calculated with 4 particles.

Another simplification is the use of cut-off-boxes so that only the particles that are potentially
in reach need to be considered.

The volume of the simulation space isVs = N
d whereN is the number of particles andd is the

density.
The volume of a cut-off-box isV c = c3 wherec is the cut-off-distance.
The number of cut-off-boxes isNc =

Vs
Vc

The number of particles per cut-off-box is on average:

Npc =
N

Nc
=

N � Vc
Vs

= d � Vc

which is as expected equal to the density times the volume of the cut-off-box. In reality this is
not very likely and I am sure that some random distribution will model this more accurately.

First the forces within the cut-off-box need to be calculatedd�Vc�(d�Vc�1)
2

Then the forces in the surrounding boxes will be calculated. This is proportional to the square
of the number of particles as the previous simplifications don’t work in this case.(d � Vc)

2. In
total there are 26 neighbouring boxes but only 13 of them need to be considered because of the
preservation of momentum. Hence the total work for one cut-off-box is:
d�Vc�(d�Vc�1)

2 + 13 � (d � Vc)
2

That means for the whole space

Vs
Vc
(
d�Vc�(d�Vc�1)

2 + 13 � (d � Vc)
2)

N
d�Vc

(
d�Vc�(d�Vc�1)

2 + 13 � (d � Vc)
2)

N 27�d�Vc�1
2

EPCC-SS-2001-10 15

5 Appendix B: Input parameters and algorithms

Input parameters are:

� cut-off-distancecdist: particles separated by cut-off-distance won’t interact with each
other

� densityd: the density of the fluid

� GAMMA gamma: Dissipative coefficient used in force calculation between Monomers

� SIGMA sigma: noise coefficient used in force calculation between Monomers

� iterationsi: number of times the calculations should take place

� expected energyEe: the energy that the fluid is expected to settle at, used for setup

� number of particlesN : in the simulation space.

� shearshear: shear rate acting in Lees Edwards boundary conditions

� specForceFspec: specific constant quantifying the interaction between different particle
types

� timestep�t: real amount of time between iterations (within the scope of the simulation)

� volumeFracvF : the volume fraction of Monomers being involved in dimers

� particle massm: the mass of a single Monomer

� dimer distancedD: the distance Monomers are separated in a Dimer.

5.1 Algorithms

� Volume of the SpaceVs = N
d

� Dimension of the space:
The space has the same length in each direction with the value being
dimx = dimy = dimz =

3
p
Vs

� Number of cut-off-boxesNc = d
3
p
Vs
c e

� Number of DimersND = dN �vF
2 e

� Number of single MonomersNM = N �ND

� Shear velocity increment in y direction�vy = shear � dimx

� Shear position increment�ry = �vy ��t

5.1.1 Force calculation

The algorithm for creating the Gaussian Normal distribution:

public static double gaussianRandom(double d_sigma, double timeStep){
final double A1 = 3.949846138;

EPCC-SS-2001-10 16

final double A3 = 0.252408784;
final double A5 = 0.076542912;
final double A7 = 0.008355968;
final double A9 = 0.029899776;
double sum =0.0;
double result=0.0;

for(int i=0;i<12;i++){
sum += Math.random();

}
result = (sum-6.0)/4.0;
double resultPow2 = result * result;
result = ((((A9*resultPow2 + A7)*resultPow2 + A5)*resultPow2 +

A3)*resultPow2 + A1)*result;
result = d_sigma * result / Math.sqrt(timeStep);
return result;

}

where d_sigma issigma

Position of particle ipi
Position of particle jpj

Velocity of particle ivi
Velocity of particle jvj

Position difference between 2 particlespij = pj � pi
Velocity difference between 2 particlesvij = vj � vi

Distance between 2 particlesrij =
p
pij � pij

vdotr = pij � vij

Fd = �
gamma�(1=rij�1=cdist)

rij2
� vdotr

Fc = Fspec(ij) �
1
rij

� 1
cdist

Fr =
 � 1
rij

� 1
cdist

whereFd is the dissipative force,Fc is the conservative force andFr the random force.
 is
a random variable with a Gaussian normal distribution (N(0; 1)). The force increment on the
particle is then(Fd + Fc + Fr) � pij.

5.1.2 Velocity and Position

The velocity change on particlei is�vi =
fi��t
m

The position change on particlei is�ri = vi ��t

EPCC-SS-2001-10 17

6 Appendix C: Test results

6.1 Settings for graph energy_1

Density= 6.0
cut-off-distance= 1.0
Shear= 0.01
Number of particles= 1000
Number of iterations= 10000
GAMMA= 5.625
SIGMA= 0.0
Volume fraction of dimers= 0.7
Density= 6.0
Expected Energy= 25.0

Specific forces:
0 1 2 3 4
1 25.0 25.0 0.0 50.0
2 25.0 0.0 0.0 50.0
3 0.0 0.0 25.0 30.0
4 50.0 50.0 30.0 25.0

The basic types are:
Particle type 1 has mass 1.0
Particle type 2 has mass 1.0
Particle type 3 has mass 1.0
Particle type 4 has mass 1.0

The types reserved for Monomers are:
Particle type 1 has mass 1.0
Particle type 2 has mass 1.0

The dimer prototypes are
Dimer prototype definition:
Particle type 3 has mass 1.0
Particle type 4 has mass 1.0
The distance between the particles is: 0.5

6.2 Settings for graph energy_2

Density= 6.0
cut-off-distance= 1.0
Shear= 0.01
Number of particles= 1000
Number of iterations= 10000
GAMMA= 5.625
SIGMA= 1.0

EPCC-SS-2001-10 18

Volume fraction of dimers= 0.7
Density= 6.0
Expected Energy= 25.0

Specific forces:
0 1 2 3 4
1 25.0 25.0 0.0 50.0
2 25.0 0.0 0.0 50.0
3 0.0 0.0 25.0 30.0
4 50.0 50.0 30.0 25.0

The basic types are:
Particle type 1 has mass 1.0
Particle type 2 has mass 1.0
Particle type 3 has mass 1.0
Particle type 4 has mass 1.0

The types reserved for Monomers are:
Particle type 1 has mass 1.0
Particle type 2 has mass 1.0

The dimer prototypes are
Dimer prototype definition:
Particle type 3 has mass 1.0
Particle type 4 has mass 1.0
The distance between the particles is: 0.5

The only difference between the 2 graphs is the SIGMA coefficient which defines the strength
of the random component in the force calculation.

EPCC-SS-2001-10 19

Figure 7: Kinetic energy of 1000 particles over 10000 iterations: energy_1 has SIGMA=0.0,
energy_2 has SIGMA=1.0

EPCC-SS-2001-10 20

References

[1] P. J. Hoogerbrugge and J. M. V. A. Koeleman. Simulating Microscopic Hydrodynamic
Phenomena with Dissipative Particle Dynamics. Europhysics Letters, June 1992. 19 (3),
pp. 155-160.

[2] L. Pottage J.M. Bull, L.A. Smith and R. Freeman. Benchmarking Java against C and Fortran
for Scientific Applications. In Proceedings of ACM Java Grande/ISCOPE Confrence, June
2001.

I am currently studying Computer Science at Edinburgh University and will en-
ter my third out of four years this October. My interests range from Computing
to Photography including Meteorology and Climate science.

Many thanks to my two supervisors Lorna Smith (EPCC) and Alexander Wag-
ner (Physics Department) who helped me stay focused throughout this project.

