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I/O Issues and Benchmarking of the Parallel GW Space code

Scott Fraser

Abstract

The serial GW Space code written by the solid state physics group in York had pre-
viously been parallelised using MPI code, with a significant gain in performance during
the intensive calculations but a considerable loss due to I/O issues. The I/O routines were
re-written using new MPI and MPI-2 routines to attempt to increase the efficiency. The
benchmarks of the resulting code are presented here, along with a discussion of the various
I/O techniques.
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1 Introduction

The GW space code is used to calculate the excited states of materials such as semi-conductors.
However the code is very computationally intensive, and for realistic problems the execution
time is too high. Accordingly a parallel version of the code has been developed using MPI.

While the execution time is lowered somewhat, the code is limited by several I/O routines. This
project focuses on these I/O issues with the aim of improving the performance of the code, with
both MPI and new MPI-2 methods.

2 Background

2.1 The Physics

In solid-state physics, we can calculate the ground state energy of a system using density func-
tional theory (DFT) exactly in principle. However for many systems it is the excited states which
are of interest, in particular intrinsic semi-conductors which are insulators in low energy states,
but conductors in excited states. The normal method used in the DFT approach is the local
density approximation (LDA) of Kohn and Sham[1], which formulates the problem in terms of
a similar system of noninteracting electrons.

The main difference between our hypothetical system and the real system is that the exchange
correlation self-energy operator� is ignored. However it has been shown[2] that for semicon-
ductors, theGWapproximation formulated by Hedin in 1965[3] allows computation of the band
gaps in excellent agreement with experiment.

The code used here was developed by Reigeret al[4], the principle merit of which is that it does
not rigidly adhere to reciprocal space in it’s calculation. As parts of the calculation are more
efficiently calculated in real space, the code takes advantage of highly optimised FFT routines
to switch to the most efficient representation for each part of the calculation.

A parallel version of the code using MPI had previously been developed. This code used a great
deal of computational time with expensive I/O procedures, and here these were to be improved
by means of new MPI code and also by introducing MPI-2 code.

2.2 TheGWspace-time method

A detailed description of the method is given by Reigeret al [4] including the algorithm, ex-
planations of the discretisation of the equations, numerical considerations and the scaling of the
code.

However the GW approximation is described in appendix A, and description of how the code is
related to the algorithm used is given in Appendix B.

2.3 Parallelisation Strategy

The code was initially parallelised using MPI[5], with details given in Appendix B.
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The calculations in the code involve several large arrays, which are calculated and written to
file. Accordingly these were split across the processors which would then calculate a small part
of the overall array, before being gathered together and written to file.

The remainder of the changes were due to ensuring that all the required variables were on each
processor, and that each processor knows which part of the array it should calculate. It was also
necessary to reorder a few arrays.

Profiling of this code showed that a large proportion of the execution time is spent in MPI_BCAST
calls, due to I/O issues.

3 I/O Techniques

3.1 Method 1

The first approach was to attempt to decrease the time taken for the input.

3.1.1 Input using blocking sends

The algorithm for this piece of code was as follows:

rec = 1
OPEN(handle,file,access=’direct’,recl)
IF(rank.EQ.0)THEN

DO i=rec,rec+numread
READ array(handle,rec=i)

ENDDO
ELSE

CALL MPI_RECV(rec,rank-1)
DO i=rec,rec+numread

READ array(handle,rec=i)
ENDDO

ENDIF
CALL MPI_SSEND(rec,rank+1)

Wherenumread is the amount of data read in by each processor, roughly equal to the total
amount divide by the number of processors. Each processor reads up to it’s required record and
then sends its final record number on to the next processor which starts reading from that record.

This method of input would be useful in the case where the data on file is an array and each
processor required only one small section of the array. For the code used here each processor
required all the data, and the method above will work only for unformatted input, while the
input data was only available as formatted data.

It would also be possible to change this to write, rather than read, to a file. Either of these
methods would produce exactly the same result as the MPI-2 read/write considered later. It
would be interesting to test the performance of such an algorithm compared to the MPI-2 code.
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3.1.2 Reading input with all PEs

The next idea to be considered was that of allowing all the PEs to access the file and read in
the data. This removes the time-consuming broadcasts and two of the subroutines in the input
phase.

Due to the fact that this reduces the portability of the code as some operating systems lock files
when they are being read as well as when data is written to them, the code was written with a
logical variable pe_all_read set in the control file.

This determines at runtime whether just one or all PEs should read the code.

3.2 Use of MPI-2 to improve code

The primary investigation into the use of MPI-2 centered around writing the temporary files
created within program. Temporary files are created, written to and then are read again later
in the program. Such temporary storage is necessary as the data is too large to be stored in
memory. The use of MPI-2 to read in the data was also considered.

3.2.1 Reading input using MPI-2

Reading the input data with MPI-2 code was looked at but in this case it would require a great
deal of work, with little benefit over previous methods, as it is geared towards unformatted input
while as already mentioned the current code uses formatted input.

3.2.2 I/O for temporary files (Basic data types)

The original method using MPI-2 code to write out temporary files used basic datatypes and is
not the most efficient way to write data.[6].

Each time the processor is about to write a part of the array to file, it calculates the offset at
which it should do so and then uses the MPI-2 call MPI_FILE_WRITE_AT_ALL.

The program loops over itself several times to gradually build up the structure of the file. Using
this MPI-2 method introduces another 2 loops in the test code. This is because the array used for
testing had 3 indices, and each processor must write every part to a completely different section
of the file.

When the small test code was integrated into the main program and the code was timed, the
MPI-2 code performed considerable slower than the original MPI code. Therefore attention was
turned to more efficient methods.

3.2.3 I/O for temporary files (Derived data types)

A more thorough investigation of MPI-2 revealed that using derived datatypes has the poten-
tial to increase the speed of the I/O processes by an order of magnitude compared to basic
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datatypes[6]. In this case the implementation is much easier, as there is a new function in MPI-
2, MPI_TYPE_CREATE_SUBARRAY which will give each PE a view of a section of an array
only.

PE 0

PE 1

PE 2

PE 3PE 3

PE 2

PE 1

PE 0

Figure 1: Schematic representation of standard MPI (left) and MPI-2 writing to file

Figure 1 shows how the different approaches view the file. With standard MPI all data is gath-
ered onto one processor, which then writes to the file. With MPI-2 each processor writes it part
of the array directly to the correct offset in the file.

The result is an algorithm similar to the following:

CALL MPI_TYPE_CREATE_SUBARRAY(...,filetype,...)
CALL MPI_TYPE_COMMIT(filetype)
CALL MPI_FILE_SET_VIEW(...,MPI_REAL,filetype,...)
CALL MPI_FILE_WRITE_ALL(...,subarray,...)

Where the MPI-2 call writes the subarray to the correct offset in the file such that when all
PEs are finished, the array is in the correct order in the file.

While this was straightforward, difficulties arose later in the code when the data was read in
again. This is because in the MPI-2 code the portion of code above is looped over and consecu-
tive arrays are written in sequence to a file.

In the corresponding serial/MPI code, consecutive arrays are not written in sequence to the file.
Further, with one particular array (p0k in polar.F90) it is read in later in a completely different
sequence.

As MPI-2 lacks flexibility over the way it writes data to file, this means that for each set of arrays
written out in this manner the code must be altered to read in section of code it would previously
have done. This is a non-trivial matter, so the code has been tested on a section where the arrays
are written sequentially to file.

4 Results

4.1 Benchmarks for the initial MPI code

Results are presented for a Cray T3E 1200 (CSAR service at Manchester):
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Num/PEs Time/min Speedup

Serial 91.83 1
1 99.05 0.93
8 29.29 3.14
16 23.25 3.94
32 21.07 4.36
64 20.72 4.43

Table 1: Benchmarks for the MPI code

The previously developed MPI-1 code was recompiled with the optimisation flags-O3 and -
Ounroll2 and benchmarked against the serial code with the same flags.
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Figure 2: Speedup for MPI-1 Code

The code does not scale well because of the MPI_BCAST calls and sequential components. The
code is most efficient at around 8 to 16 processors.

The use of pe_all_read was also tested for input:

Reading pe_all_read=.false. pe_all_read=.true.

Control file 3.79E-2 5.26E-2
Data up tocast1.F90 3.86E-2 7.42E-2
Data up tocast3.F90 0.193 0.188
eldank 2.34E-2 2.02E-2
qvec and rmax 0.856 0.836

Table2: Timings for various sections with pe_all_read

This increased the speed over most of the sections. Reading the control file took longer as 2
extra calls of MPI_BCAST were necessary.

In the original code one processor was used to read the data in, and incast1.F90andcast3.F90
these were bundled into a derived datatype and a single broadcast was then used. Table 2 shows
that up tocast1.F90the original code was actually faster. Future work will investigate this
further

In the other cases, where it was simply a case of reading data straight from file and then broad-
casting it, the new method was faster.
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4.2 Timings for the MPI-2 Code

Method Time(s)

Original MPI 0.15
MPI2(basic datatypes) 0.397

Table 3: Timings for MPI-2 in polar.F90, basic datatypes

The first attempt at MPI-2 using basic datatypes was not fully implemented into the code. How-
ever it was tested over one small section which showed that the code was between 3 and 4 times
slower than the original MPI code over that section.

Method Time(s)

Original MPI 67.34
MPI2(derived datatypes) 87.82

Table 4: Timings for MPI-2 in polar.F90, basic datatypes

Using derived datatypes improved the time taken for the MPI-2 a great deal, and also made the
implementation easier. However the original MPI code was still more efficient than the MPI-2
code.

5 Conclusions

While there is a substantial decrease in execution time for the MPI-1 program, it does not scale
well as a speedup of slightly less than 4.5 with 64 processors leaves a great deal to be desired.

The speedup obtained with 8 and 16 processors is fairly satisfactory. The code is clearly limited
by the I/O and the fact that large amounts of the code run sequentially.

The methods investigated for increasing the I/O did not produce a substantial difference. While
reading in the data on all processors produces some gain, it is not very significant. More sur-
prisingly, the MPI-2 code was outperformed by the original code. In addition, MPI-2’s lack of
flexibility meant that it could not be applied to the most time-intensive I/O call (inpolar.F90)
in the time given. While it would be possible to unravel the original code to determine in which
sequence the arrays are written to file, this is a fairly difficult procedure.

5.1 Further work

� The MPI code using blocking sends should be tested more. If it proves more efficient
than the original MPI code it could perhaps be written as a function and implemented as
an MPI-2 style function call.

� Places where using pe_all_read is effective should be identified in the code and applied.
The section where this method is slower than the original should be checked.

� A more thorough benchmarking of MPI-2 I/O processes should be done. While literature
is available[6] to support the claims that MPI-2 I/O is faster, in this project this has not
been the case. It would be useful to know where and when MPI-2 is more effective.
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6 Appendix A

Hedin’s proposal was that the self-energy operator can be approximated by

�(r; r0;!) =
i

2�

1Z

�1

d!0W (r; r0;!)�G(r; r0;! + !0)ei!
0
Æ (1)

whereÆ is an infinitesimal positive time andW is the screened Coulomb interaction given by

W (r; r0;!) =

Z
d3r00v(r� r

00
)��1

(r
00; r0;!) (2)

in which v(r � r
00) is the Coulomb interaction1=jr � r

0j and G is the one-particle Greens
function. Here, and in most practical calculations,G is approximated by the non-interacting
Greens function at the LDA level:

GLDA(r; r0;!) =
X
nk

 nk (r) 
�

nk
(r0)

! � �nk � i�
(3)

where� is a positive infinitesimal for occupied one-particle states, and negative for unoccupied
states. The nk are eigenfunctions with the associated eigenfunctions�nk which are obtained
from a LDA calculation of the system.

The inverse dielectric function in Eq.(2) is obtained using the random phase approximation
(RPA)

�RPA(r; r0;!) = Æ(r� r
00)�

Z
dr00v(r� r

00)P 0(r00; r0;!) (4)

and here the irreducible polarization propagatorP
0 is given by

P 0
(r; r0;!) = �

i

2�

1Z

�1

d!0GLDA
(r; r0;!)�GLDA

(r; r0;! � !0) (5)

In the method used here the efficiency is obtained due to the fact that when (1) and (5) are
transformed from the frequency domain to the time(real or imaginary) domain they become
simple multiplications. For real times (3) becomes

GLDA
(r; r0;!) =

8><
>:
i
P

occ

nk  nk (r) 
�

nk
(r0) exp(�i�nk�); � < 0

�i
P

unocc

nk  nk (r) 
�

nk
(r0) exp(�i�nk�); � > 0

(6)

Once we have a value for the self-energy we treat this as a peturbation on the LDA potential to
calculate the corrections to the LDA eigenvalues.
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7 Appendix B

The algorithm used in the code is as follows:

(1) Construction of the Greens function in real space and imaginary time. (polar.F90)

GLDA(r; r0; i�) =

8><
>:
i
P

occ

nk  nk (r) 
�

nk
(r0) exp(�nk�); � < 0

�i
P

unocc

nk  nk (r) 
�

nk
(r0) exp(�nk�); � > 0

(7)

(2) use this to calculate the RPA irreducible polarizability in real space and imaginary time,(polar.F90

P 0
(r; r0;!) = �iGLDA

(r; r0; i�)�GLDA
(r; r0;�i�) (8)

(3) transformP 0 to reciprocal space and imaginary energy (polar.F90) and construct the dielec-
tric matrix, (inweps.F90or wepsio.F90depending on run-time options)

��(k;G;G0
; i!) = Æ0GG �

4�

jk+Gjjk+G0j
P 0

(k;G;G0
; i!) (9)

(4) then invert the dielectric matrix for eachk point and each imaginary energy (inweps.F90or
wepsio.F90depending on run-time options)

(5) calculate the screened Coulomb interaction in reciprocal space (weps.F90)

W (k;G;G0; i!) =
4�

jk+Gjjk+G0j
� ��(k;G;G0; i!) (10)

(6) Fourier transformation ofW to real space and imaginary time, (inweps.F90or wepsio.F90
depending on run-time options)

(7) calculation of the self-energy operator. This is composed of 3 terms, the bare exchange,(calculated
in selfx.F90), a long-range term with multiplicative screening(W) and a short ranged term
(sigma.F90).

�(r; r0; i�) = iG(r; r0; i�)W (r; r0; i�) (11)

(8) evaluation of the expectation valuesh nkj�(i�)j �nki (smatrel subroutine insigma.F90)

(9) Fourier transformation of the expectation values to imaginary energy. (insmei.F90or smei-
wgl.F90, depending on run-time options)

The code proper ends here but two further steps are required to obtain data which can be com-
pared to experiment:

(10) fitting of a model function to the expectation values of the self-energy, allowing analytic
continuation onto the real energy axis.

(11) evaluation of the quasiparticle corrections to the LDA eigenvalues by first-order perturba-
tion theory inh�� V LDA

xc i
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8 Appendix C

The most time intensive routines in the serial code were parallelised as follows [5]:

8.1 gwst.F90

In the main routine changes were made to allocate necessary variables or arrays on all PEs.
Much initialising data is read in fromgwst.ctr, which is moved in the parallel code to a separate
subroutine (readin.F90). Here derived datatypes are used so all logicals, integers and reads are
distributed in one broadcast. There are also several arrays ingwst.F90which are read in from
a data fileinput on PE 1 (rank 0) and are then broadcast to all PEs. Two additional subroutines
using derived data types (cast1.F90andcast2.F90) are used to broadcast sets of variables as
well.

8.2 polar.F90

Here new arrays are introduced(greensnPE,greenspPEand p0kPE) which hold part of the
complete arrays(greensn,greenspandp0k. Each PE calls the subroutinegreensrt.F90with
greensnPEorgreenspPEas output, i.e. each processor calculates one part of the whole array.
Then anMPI_GATHERV call is used, and PE 1 writes the complete arrays to file. Here the
new datatypesGREENTYPE andFINALTYPE are used to ensure the gather works correctly.

Thenp0kPE is calculated on all PEs, gathered withMP_GATHERV into p0k and written to
file by PE 1 with the use of the datatypesP0KPETYPE andRECVTYPE .

8.3 selfx.F90

Data is again required to be read in on PE 1 and then broadcast. A subroutinesfq.F90is called
and returns the arrayfqPE on each processor. In a similar manner as before, this is a small part
of the arrayfq, and the parts are gathered as before. It is also necessary to reorder the array in
ReOrder.F90 to obtainfqfinal .

8.4 sigma.F90

In this routine the arraysunk, vcr andwR are read in on PE 1 and broadcast to the other PEs.
However it is probably faster to re-calculategreensas before rather than reading it from a file,
and this is the method used by default.

The subroutinessmatrel.F90, sfq2.F90are also divide up amongst the PEs for different parts
of the arraysgreensnPE/fr/fqPE. The first index offq requires reordering as didfqPE in
selfx.F90. Here the output has different dimensions, so the routinesfq2.F90 is used rather
than the original.
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8.5 greensrt.F90

Here the scope of some of the arrays have been limited to the appropriate size on each PE only:

greens(nstart(rank+1),
green(begin:end,tmin:tmax),
greenc(begin:end,kstars%npos),
greenct(begin:end,kstars%npos),

wherenstart, beginandendare calculated inInitMPI.F90 . Hence only parts of the full arrays
are calculated on each PE.
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