

Modelling of Fracture Growth in Rocks

Helen Gibson

August 31, 2001

Modelling of fracture growth in rocks 1

Motivation

- Previous work
- Generating cracks
- Calculating stresses
- Future developments

Motivation

- Gain a better understanding of the mechanism of brittle rupture, crack propogation. How cracks relate to each other, join together Which nodes grow, which don't
- Cracks provide pathways for fluid flow, and contaminant transport
 - Water quality
 - Nuclear waste disposal
 - Oil mining in a fracture reservoir

Computing cracks

Take a domain, sub-divide into smaller pieces, put grids on them.

Computing cracks

- Apply forces and boundary conditions, calculate the stresses at each point using finite element method.
- Cracks are failed elements.
- Cracks can be propogated if the stress at surrounding points are greater than the local strength of the material.

Previous Work

Javier did extensive work using serial code

- Applies Dirichlet boundary conditions (forces displacements to be zero)
- Applies forces
- Allows inputs of fractured nodes
- Displays stresses

|epcc|

Serial Code Output

Beginnings of the Parallel code

- Javier then began on a parallel code.
- Models the elasticity of a rock displays the displacements under an applied force
- Partitions the grid using Metis a set of programs for partitioning finite element meshes, available on the web

Partitioned with Metis

Beginnings of the Parallel code

Parallelised using MPI

Uses the AZTEC library

an iterative solver library that simplifies the parallelization process when solving linear systems of equations.

Y-component of displacement

Initial Difficulties

Did not run on the suns

- Aztec library portablility
- Works on Linux

The input file includes:

- The co-ordinates for each gridpoint
- The gridpoints in each element
- Specification of Dirichlet boundary conditions, nodal forces and materials.

My mesh generator creates a similar input file

- Square
- Dirichlet boundary conditions, corners, edges
- Forces along edges

My grid

Generating Cracks

- A point in the rock is broken by applying Dirichlet b.c. at that point.
- I modified the code to

Identify nodes between start and end point of a crack.Modify stiffness matrix (contains directional information of the Young's Modulus at each point) to apply Dirichlet b.c. to the nodes identified.I will also write a subroutine to generate random cracks.

|epcc|

Displacements

X-component of displacement

Y-component of displacement

Calculating Stresses

The stress matrix can be calculated from the derivatives of the displacements in the x and y direction and the Poisson's ratio and Young's Modulus of the material

Invariants of stress matrix calculated

Future Developments

Display stresses

Crack propogation developments

Introduce heterogeneous strength field to the rock

Determine direction and length of breakage using stress at tips and grow crack accordingly

Develop code involving forces Direction Size

Questions?

Modelling of fracture growth in rocks 20