
Overview

Introduction and Background

Initial parallelisation with MPI-1
MPI-1 benchmarks

Improvements and parallelisation with MPI-2
MPI-2 benchmarks

Conclusion

The Parallel GW Space Code and I/O issues 1



Introduction and Background

We can calculate the ground state energy of a ma-

terial using Density Functional Theory.

For many substances, e.g. semiconductors, we are

interested in their excited states.

To do this, we calculate their self-energy and then use

peturbation thoery to calculate the excited energy.

The serial GW space code was developed to do this.

The Parallel GW Space Code and I/O issues 2



The GW Space Code

Although there are many improvements that can be

done to the code, it is still very expensive.

A parallel version of this code has been developed

using MPI-1 which has significant gains in terms of

computation time.

But the code is slowed down too much by time-consuming

MPI GATHER and MPI BCAST calls.

The Parallel GW Space Code and I/O issues 3



Parallelisation with MPI-1

The culprits are input and output

several large arrays split across PEs

each PE deals with a sub-section of the array

each PE requires a copy of all input data

all sub-arrays are sent to the master PE which writes

out the complete array

The Parallel GW Space Code and I/O issues 4



MPI-1 Benchmarks

min/PE min routine mostly spent in
64.22 4110 program -

3190 MPI BCAST -
276 gwst MPI BCASTs

6.67 427 smatrel in sigma MPI ALLGATHERV(some array),
iterim=sum() eq. sxexpv

6.39 409 sigma MPI BCAST(some array)
369 MPI ALLGATHERV -

3.23 207 polar MPI GATHERV(some array)
201 MPI GATHERV -

1.20 76.9 sfq2 calculation of an inner product

0.63 40 ReOrder -

0.57 36.2 selfx sxexpv=sxepv+...

0.29 18.5 greensrt green=green+gkaux*aux

0.27 17.2 triangle in rmt -

The Parallel GW Space Code and I/O issues 5



Optimisations

Input
Modification of MPI-1 routines

- JC’s code
- Reading on all PEs

MPI-I/O

Output
Modification of MPI-1 routines

- JC’s code
MPI-I/O

- With basic datatypes
- With derived datatypes

The Parallel GW Space Code and I/O issues 6



Improvements to MPI-1

IF(rank.eq.0) THEN

OPEN file

ELSE

MPI RECV(offset)

REWIND(iunit)

DO i = offset,offset+enddata

READ(iunit,REC = i,...)

ENDDO

ENDIF

MPI SSEND(offset,rank+1)

Code runs sequentially and needs unformatted input

The Parallel GW Space Code and I/O issues 7



Improvements to MPI-1

The main slowdown with input is in broadcasting ar-

rays.

It is then possible to have all PEs access the file and

read in the data at the same time.

The logical variable pe all read is set in the control

file

This must be set to false if the OS locks files when

being read.

The Parallel GW Space Code and I/O issues 8



Timings for pe all read

Over all input:

pe all read(.false.) = 28.9282

pe all read(.true.) = 28.9298

Over the cast1.F90 and cast2.F90 routines, the timings were:

pe all read=(.false.) = 28.7398

pe all read=(.true.) = 28.8364

The Parallel GW Space Code and I/O issues 9



Use of MPI-2 for I/O

MPI-1

CALL MPI TYPE STRUCT(...,FINALTYPE,...)

CALL greensrt(...,greensnPE,...)

CALL greensrt(...,greenspPE,...)

CALL MPI GATHERV(greenspPE,...)

CALL MPI BARRIER

IF (rank.eq.0) WRITE greenspPE

MPI-2

CALL MPI TYPE CREATE SUBARRAY(...,filetype,...)

CALL MPI FILE SET VIEW(...,MPI REAL,filetype,...)

CALL greensrt(...,greensnPE,...)

CALL greensrt(...,greenspPE,...)

CALL MPI FILE WRITE ALL(...,greenspPE,...)

The Parallel GW Space Code and I/O issues 10



Derived Datatypes

The Parallel GW Space Code and I/O issues 11



Problems with MPI-2

In original code:

Write to record:

rstars%nstars*(it-twgrid%ntmin) + irs

1st read from record:

(kstars%npos*rstars%nstars * it) +

(kstars%npos*(irs-1)) +

kstars%regtopos(kstars%nomem(ik)

2nd read from record 2:

rstars%nstars*(it-twgrid%ntmin) + irs

In MPI-2 code:

Write to record:

irs

1st read from record:

??????

2nd read from record:

irs

The Parallel GW Space Code and I/O issues 12



MPI-2 Benchmarks

MPI-2 benchmarks

The Parallel GW Space Code and I/O issues 13



Conclusion

For large arrays, MPI-2 I/O is more efficient

For small arrays and other data, MPI-1 should be

used

MPI-2 I/O should be easier to implement

Input of data should be looked at more closely. Cur-

rently the cast routines are the most efficient.

The Parallel GW Space Code and I/O issues 14


