Overview

» Introduction and Background

» Initial parallelisation with MPI-1
MPI-1 benchmarks

» Improvements and parallelisation with MPI-2
MPI-2 benchmarks

» Conclusion

The Parallel GW Space Code and I/ O issues 1



‘ epCC ‘ Introduction and Background

>

We can calculate the ground state energy of a ma-

terial using Density Functional Theory.

For many substances, e.g. semiconductors, we are

interested in their excited states.

To do this, we calculate their self-energy and then use

peturbation thoery to calculate the excited energy.

The serial GW space code was developed to do this.

The Parallel GW Space Code and I/ O issues 2



‘epCC‘ The GW Space Code

» Although there are many improvements that can be

done to the code, it is still very expensive.

» A parallel version of this code has been developed
using MPI-1 which has significant gains in terms of

computation time.

» Butthe code is slowed down too much by time-consuming

MPI_GATHER and MPI_BCAST calls.

The Parallel GW Space Code and I/ O issues 3



vV v v v V

Parallelisation with MPI- 1

The culprits are input and output

several large arrays split across PEs

each PE deals with a sub-section of the array

each PE requires a copy of all input data

all sub-arrays are sent to the master PE which writes

out the complete array

The Parallel GW Space Code and I/ O issues 4



min/PE
64.22

6.67
6.39
3.23
1.20
0.63
0.57

0.29
0.27

min
4110
3190
276
427

409
369
207
201
76.9
40
36.2
18.5
17.2

routine

program
MPI_BCAST

gwst
smatrel_in_sigma

sigma
MPI_ALLGATHERY
polar
MPI_GATHERY
sfq2

ReOrder

selfx

greensrt

triangle in_rmt

MPI-1 Benchmarks

mostly spent in

MPI_BCASTs
MPI_ALLGATHERV (some array),
iterim=sum|() eq. sxexpv
MPI_BCAST(some array)
MPI_GATHERV (some array)
calculation of an inner product
sXxexpv=sxepvt...

green=green+gkaux*aux

The Parallel GW Space Code and I/ O issues

5



Optimisations

» Input
Modification of MPI-1 routines
- JC’s code
- Reading on all PEs
MPI-1/O
» Output
Modification of MPI-1 routines
- JC’s code
MPI-1/O

- With basic datatypes
- With derived datatypes

The Parallel GW Space Code and I/ O issues )



Improvements fo MPI- 1

IF(rank.eq.0) THEN

OPEN file

ELSE
MPI_RECYV (offset)
REW IND (iunit]
DO i = offset, offset+enddata

READ (iunit, REC = i,...)

ENDDO

ENDIF

MPI_SSEND (offset,rank+1)

» Code runs sequentially and needs unformatted input

The Parallel GW Space Code and I/ O issues 7



‘ epCC‘ Improvements to MPI- 1

» The main slowdown with input is in broadcasting ar-

rays.

» It is then possible to have all PEs access the file and

read in the data at the same time.

» The logical variable pe all read is set in the control

file

» This must be set to false if the OS locks files when

being read.

The Parallel GW Space Code and I/ O issues 8



Timings for pe_all read

Over all input:
pe_all_read(.false.) = 28.9282
pe_all_read(.true.) = 28.9298
Over the cast1.F?0 and cast2.F90 routines, the timings were:
pe_all_read=(.false.) = 28.7398
pe_all_read=(.true.) = 28.8364

The Parallel GW Space Code and I/ O issues 9



Use of MPL-2 for |/ O

MPI-1
CALL MPLTYPE_STRUCT(...,FINALTYPE,...)
CALL greensrt(...,greensnPE,...)

CALL greensrt(...,greenspPE,...)

CALL MPI_ GATHERV(greenspPE,...)
CALL MPILBARRIER
IF (rank.eq.0) WRITE greenspPE

MPI-2
CALL MPITYPE_CREATE_SUBARRAY(...,filetype,...)
CALL MPLFILE_SET_VIEW/(...,MPI_REAL,filetype,...)
CALL greensrt(...,greensnPE,...)

CALL greensrt(...,greenspPE,...)
CALL MPI_FILE WRITE ALL(...,greenspPE,...)

The Parallel GW Space Code and I/ O issues 10



Derived Datatypes

I Process 0 I Process
- Process | - Process 3

The Parallel GW Space Code and I/ O issues 11



Problems with MPI-2

In original code:
Write to record:
rstarsYnstars *(it-twgrid%ntmin) + irs
1st read from record:
(kstars%onpos *rstars%nstars * it) +
(kstarsYonpos *(irs- 1)) +
kstars%regtopos(kstars%onomem (ik)
2nd read from record 2:
rstarsYenstars *(it-twgrid%ntmin) + irs
In MPI-2 code:
Write to record:
irs

1st read from record:
e2222°2

2nd read from record:
irs
The Parallel GW Space Code and I/ O issues 12



MPI-2 Benchmarks

MPI-2 benchmarks

The Parallel GW Space Code and I/ O issues 13



‘ e p CC ‘ Conclusion

» For large arrays, MPI-2 1/O is more efficient

» For small arrays and other data, MPI-1 should be

used
» MPI-2 1/O should be easier to implement

» Input of data should be looked at more closely. Cur-

rently the cast routines are the most efficient.

The Parallel GW Space Code and I/ O issues 14



