
A Vectorized Traversal Algorithm A Vectorized Traversal Algorithm
for Ray-Tracingfor Ray-Tracing

University of Jaén

University of Granada

José María Noguera Rozúa

Carlos Ureña Almagro

Rubén J. García Hernández

 2

Contents

 Introduction
 Previous Work
 Our Proposal
 Results
 Conclusions & Future work

 3

Introduction I

 Ray-Tracing:
 Very Realistic image synthesis.
 Complex models supported.
 Basis of many algorithms.
 Traditionally slow.

 4

Introduction II

 Parallel Raytracers
 Breadth-first traversal.
 SIMD aware.
 Some approaches use GPU.
 High performance →

Interactive / Real-Time RayTracing.

 5

Previous work

Classic algorithm

 Traversal algorithm: Once per ray

r
1

r
1

r
1

 6

Previous Work

Wald's algorithm I

 Coherent rays:
 Rays with the same origin and very similar direction

will very probably hit the same objects.

 The algorithm uses a kd-tree and traverses it
with 4-ray packets.

 Parallelism using Intel SIMD: SSE.

 7

Previous Work

Wald's algorithm II

 Four ray traversal.

r
1
r
2
r
3
r
4

r
1
r
2
r
3
r
4

r
1
r
2
r
3
r
4

 8

Our Proposal

Motivation I

 Wald's algorithm limitations:
 The gain in efficiency increases with ray coherency.
 It's easy to select coherent primary rays in Ray-

Tracing or Path-Tracing.
 For secundary rays in Ray-Tracing, or other

applications, rays are not coherent.
 Gain is therefore smaller.

 9

Our Proposal

Motivation II

 With non-coherent rays, packets tend to break,
decreasing parallelism.

r
1
r
2
r
3
r
4

r
1
r
2
r
3

r
1
r
3

r
2

r
4

r
4

 10

Our Proposal

Description

 We propose traversing the kd-tree only once
but with all rays at the same time.

 Rays are classified during the traversal
process:
 No additional effort needed.
 Coherence is increased in terminal nodes.

 We aim for maximum parallelization.

 11

Our Proposal

Traversal Algorithm I

 Traversal for n rays.

r
1
r
2
r
3
r
4 ... rnr

5
r
6

r
1
r
4 ... rn2r

5

r
1
r
4
r
5

r
4 ... rn5r

5

r
2
r
3 ... rn1r

5
r
6

r
3 ... rn4

r
2 ... rn3r

5
r
6

 12

Our Proposal

Traversal Algorithm II

 Problem:
 Appears when looking for the first intersection

(typical in raytracing and other applications).
 We want the ability to stop the traversal of a ray

when finding its first intersection.
 Different rays may mean different traversal order of

the tree.

 13

Our Proposal

Traversal Algorithm III

 Solution:
 Classify the rays in eight groups according to their

director vectors.
 Run the algorithm for each group.

 14

Our Proposal

Advantages

 Advantages:
 If 2 or more rays cross the same node, they will do

it together.
 Increases the possibilities of having rays available

to process in parallel.
 Non-coherent rays will be classified when going

down the tree.
 The number of traversals of the tree, and the

number of triangle accesses is reduced.

 15

Our Proposal

Memory layout of rays I

 A global data structure for the rays:
 Stores all rays and their attributes (director vector, origin,

intersected triangle id...)

 A ray stack:
 Stores only the values for the ray traversal depending on

the current node.
 Pointer to the rest of the information in the structure

above.
 SSE optimized ”Structure of Vectors”.

 16

Our Proposal

Memory layout of rays II

A

B

C

r
1
r
2
r
3
r
4
r
5

r
1
r
2

r
5

r
1
r
4

r
4

r
6
r
7

State of the Ray
Stack in node C:

r
1
r
2
r
3
r
4
r
5
r
6
r
7 - r1 r2 r

5
r
4

r
1
r
4 - -

 17

Performance I

 Tests with coherent rays (Ray-Tracing's primary
rays – 1 ray per pixel)

 Classic algorithm, 1 traversal per ray.
 Wald's algorithm, 1 traversal per 4-ray packet.
 Wald's algorithm, 1 traversal per 64-ray packet.
 Proposed algorith, 1 traversal for each group of rays with

direction vector in the same octant.

 Test with non coherent rays
 Random rays with uniform distribution.

 18

Performance II

 Dragon
0,8 M tri.

Stanford Bunny
0,069 M tri.

Happy Buddha
1,1 M tri.

 19

Performance III

Buddha, 1.1MTri, 1280x1024

 20

Conclusions & Future Work

 Our technique allows:
 More parallelization to be extracted even for non-

coherent rays.
 Visiting each node at most eight times. Less access

to nodes and their triangles.

 Future work: larger SIMD width → GPU

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20

