
A Vectorized Traversal Algorithm A Vectorized Traversal Algorithm
for Ray-Tracingfor Ray-Tracing

University of Jaén

University of Granada

José María Noguera Rozúa

Carlos Ureña Almagro

Rubén J. García Hernández

 2

Contents

 Introduction
 Previous Work
 Our Proposal
 Results
 Conclusions & Future work

 3

Introduction I

 Ray-Tracing:
 Very Realistic image synthesis.
 Complex models supported.
 Basis of many algorithms.
 Traditionally slow.

 4

Introduction II

 Parallel Raytracers
 Breadth-first traversal.
 SIMD aware.
 Some approaches use GPU.
 High performance →

Interactive / Real-Time RayTracing.

 5

Previous work

Classic algorithm

 Traversal algorithm: Once per ray

r
1

r
1

r
1

 6

Previous Work

Wald's algorithm I

 Coherent rays:
 Rays with the same origin and very similar direction

will very probably hit the same objects.

 The algorithm uses a kd-tree and traverses it
with 4-ray packets.

 Parallelism using Intel SIMD: SSE.

 7

Previous Work

Wald's algorithm II

 Four ray traversal.

r
1
r
2
r
3
r
4

r
1
r
2
r
3
r
4

r
1
r
2
r
3
r
4

 8

Our Proposal

Motivation I

 Wald's algorithm limitations:
 The gain in efficiency increases with ray coherency.
 It's easy to select coherent primary rays in Ray-

Tracing or Path-Tracing.
 For secundary rays in Ray-Tracing, or other

applications, rays are not coherent.
 Gain is therefore smaller.

 9

Our Proposal

Motivation II

 With non-coherent rays, packets tend to break,
decreasing parallelism.

r
1
r
2
r
3
r
4

r
1
r
2
r
3

r
1
r
3

r
2

r
4

r
4

 10

Our Proposal

Description

 We propose traversing the kd-tree only once
but with all rays at the same time.

 Rays are classified during the traversal
process:
 No additional effort needed.
 Coherence is increased in terminal nodes.

 We aim for maximum parallelization.

 11

Our Proposal

Traversal Algorithm I

 Traversal for n rays.

r
1
r
2
r
3
r
4 ... rnr

5
r
6

r
1
r
4 ... rn2r

5

r
1
r
4
r
5

r
4 ... rn5r

5

r
2
r
3 ... rn1r

5
r
6

r
3 ... rn4

r
2 ... rn3r

5
r
6

 12

Our Proposal

Traversal Algorithm II

 Problem:
 Appears when looking for the first intersection

(typical in raytracing and other applications).
 We want the ability to stop the traversal of a ray

when finding its first intersection.
 Different rays may mean different traversal order of

the tree.

 13

Our Proposal

Traversal Algorithm III

 Solution:
 Classify the rays in eight groups according to their

director vectors.
 Run the algorithm for each group.

 14

Our Proposal

Advantages

 Advantages:
 If 2 or more rays cross the same node, they will do

it together.
 Increases the possibilities of having rays available

to process in parallel.
 Non-coherent rays will be classified when going

down the tree.
 The number of traversals of the tree, and the

number of triangle accesses is reduced.

 15

Our Proposal

Memory layout of rays I

 A global data structure for the rays:
 Stores all rays and their attributes (director vector, origin,

intersected triangle id...)

 A ray stack:
 Stores only the values for the ray traversal depending on

the current node.
 Pointer to the rest of the information in the structure

above.
 SSE optimized ”Structure of Vectors”.

 16

Our Proposal

Memory layout of rays II

A

B

C

r
1
r
2
r
3
r
4
r
5

r
1
r
2

r
5

r
1
r
4

r
4

r
6
r
7

State of the Ray
Stack in node C:

r
1
r
2
r
3
r
4
r
5
r
6
r
7 - r1 r2 r

5
r
4

r
1
r
4 - -

 17

Performance I

 Tests with coherent rays (Ray-Tracing's primary
rays – 1 ray per pixel)

 Classic algorithm, 1 traversal per ray.
 Wald's algorithm, 1 traversal per 4-ray packet.
 Wald's algorithm, 1 traversal per 64-ray packet.
 Proposed algorith, 1 traversal for each group of rays with

direction vector in the same octant.

 Test with non coherent rays
 Random rays with uniform distribution.

 18

Performance II

 Dragon
0,8 M tri.

Stanford Bunny
0,069 M tri.

Happy Buddha
1,1 M tri.

 19

Performance III

Buddha, 1.1MTri, 1280x1024

 20

Conclusions & Future Work

 Our technique allows:
 More parallelization to be extracted even for non-

coherent rays.
 Visiting each node at most eight times. Less access

to nodes and their triangles.

 Future work: larger SIMD width → GPU

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6
	Página 7
	Página 8
	Página 9
	Página 10
	Página 11
	Página 12
	Página 13
	Página 14
	Página 15
	Página 16
	Página 17
	Página 18
	Página 19
	Página 20

