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Introduction I

 Ray-Tracing: 
 Very Realistic image synthesis.
 Complex models supported.
 Basis of many algorithms.
 Traditionally slow.
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Introduction II

 Parallel Raytracers
 Breadth-first traversal.
 SIMD aware.
 Some approaches use GPU.
 High performance → 

Interactive / Real-Time RayTracing.
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Previous work

Classic algorithm

 Traversal algorithm: Once per ray
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Previous Work

Wald's algorithm I

 Coherent rays:
 Rays with the same origin and very similar direction 

will very probably hit the same objects.

 The algorithm uses a kd-tree and traverses it 
with 4-ray packets.

 Parallelism using Intel SIMD: SSE.
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Previous Work

Wald's algorithm II

 Four ray traversal.
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Our Proposal

Motivation I

 Wald's algorithm limitations:
 The gain in efficiency increases with ray coherency.
 It's easy to select coherent primary rays in Ray-

Tracing or Path-Tracing.
 For secundary rays in Ray-Tracing, or other 

applications, rays are not coherent.
 Gain is therefore smaller.
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Our Proposal

Motivation II

 With non-coherent rays, packets tend to break, 
decreasing parallelism.
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Our Proposal

Description

 We propose traversing the kd-tree only once 
but with all rays at the same time.

 Rays are classified during the traversal 
process:
 No additional effort needed.
 Coherence is increased in terminal nodes.

 We aim for maximum parallelization.
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Our Proposal

Traversal Algorithm I

 Traversal for n rays.
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Our Proposal

Traversal Algorithm II

 Problem:
 Appears when looking for the first intersection 

(typical in raytracing and other applications).
 We want the ability to stop the traversal of a ray 

when finding its first intersection.
 Different rays may mean different traversal order of 

the tree.
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Our Proposal

Traversal Algorithm III

 Solution: 
 Classify the rays in eight groups according to their 

director vectors.
 Run the algorithm for each group.
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Our Proposal

Advantages

 Advantages:
 If 2 or more rays cross the same node, they will do 

it together.
 Increases the possibilities of having rays available 

to process in parallel.
 Non-coherent rays will be classified when going 

down the tree.
 The number of traversals of the tree, and the 

number of triangle accesses is reduced.
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Our Proposal

Memory layout of rays I

 A global data structure for the rays:
 Stores all rays and their attributes (director vector, origin, 

intersected triangle id...)

 A ray stack:
 Stores only the values for the ray traversal depending on 

the current node.
 Pointer to the rest of the information in the structure 

above.
 SSE optimized ”Structure of Vectors”.
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Our Proposal

Memory layout of rays II
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State of the Ray 
Stack in node C:
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Performance I

 Tests with coherent rays (Ray-Tracing's primary 
rays – 1 ray per pixel)

 Classic algorithm, 1 traversal per ray.
 Wald's algorithm, 1 traversal per 4-ray packet.
 Wald's algorithm, 1 traversal per 64-ray packet.
 Proposed algorith, 1 traversal for each group of rays with 

direction vector in the same octant.

 Test with non coherent rays
 Random rays with uniform distribution.
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Performance II

     Dragon
0,8 M tri.

Stanford Bunny
0,069 M tri.

Happy Buddha
1,1 M tri.
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Performance III

Buddha, 1.1MTri, 1280x1024
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Conclusions & Future Work

 Our technique allows:
 More parallelization to be extracted even for non-

coherent rays.
 Visiting each node at most eight times. Less access 

to nodes and their triangles.

 Future work: larger SIMD width → GPU
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